
 

  

Abstract— This paper introduces a platform for situation 

management, which supports the development of situation-aware 

applications by offering (i) design artifacts for situation type 

specification, and (ii) run-time support for situation lifecycle 

management (situation detection, which may involve composite 

situation pattern recognition and ultimately situation 

deactivation). Our approach leverages on JBoss Drools engine 

(and its integrated Complex Event Processing platform) and 

enhances its functionality to natively support rule-based situation-

awareness. Our platform allows rule-based situation specification 

(and further situation lifecycle management) by means of a simple 

rule pattern. We exemplify our situation-based development 

approach with an application scenario in the public health 

domain, in which situation types for detecting and monitoring 

suspicious cases of tuberculosis are specified as situation rules. 

The specified rules are then deployed and situation detection is 

managed by the proposed rule-based situation platform.   

Index Terms — rule-based systems; situation specification; 

situation detection; situation reasoning  

I. INTRODUCTION 

central issue in reactive or proactive systems is the 

ability to bridge the gap between events that occur in the 

environment and the particular state-of-affairs of interest (aka 

situations) upon which the system is required to act (or react 

to). The field of human factors and ergonomics (HF&E) 

addresses this issue in a human-goal centric approach by 

means of a well-established concept called situation 

awareness (SA). In [1], Endsley defines SA as “the perception 

of the elements in the environment within a volume of time and 

space, the comprehension of their meaning, and the projection 

of their status in the near future”. Endsley also provides a 

theoretical framework to SA composition, proposing three 

levels of SA: (i) the perception level; (ii) the comprehension 

level, and the (iii) projection level. The first level is related to 

perceiving the status, attributes, and dynamics of relevant 

elements in the environment; the second level involves the 

synthesis of situation elements through the processes of pattern 

recognition, interpretation, and evaluation of what was 
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perceived; and, the third level comprises the ability to project 

future actions of the elements in the environment. Although 

Endsley’s reference model has been proposed to support 

humans, we argue that it can be beneficially applied to support 

the development of situation-aware applications. 

We argue that the situation awareness concept, as referred 

to by Endsley, should be exploited by reactive or proactive 

systems, such as context-aware applications. Context-

awareness focuses on characterizing the user’s environment 

(context) to promote effective interaction between applications 

and their users by autonomously adapting application’s 

behaviors according to the user’s current situation.  In the field 

of context-awareness, Dey, in [4], was one of the first to make 

efforts in this direction by proposing the situation abstraction 

concept, which is an extension of the context concept and 

refers to a mean “to determine when relevant entities are in a 

particular state so they (applications) can take action”. 

Therefore, context-aware applications in the sense of [4] could 

also be considered as situation-aware applications. 

As discussed by Kokar et al. in [11], “to make use of 

situation awareness […] one must be able to recognize 

situations, […] associate various properties with particular 

situations, and communicate descriptions of situations to 

others.” The notion of situation enables designers, maintainers 

and users to abstract from the lower-level entities and 

properties that stand in a particular situation and to focus on 

the higher-level patterns that emerge from lower-level entities 

in time. 

In order to leverage the benefits of the situation abstraction 

concept in the scope of context-aware application 

development, proper support is required at design-time (to 

specify situation types) and run-time (to detect and maintain 

information about situations). This paper contributes to such 

support by introducing a situation management infrastructure. 

We propose SCENE, a platform for situation management that 

leverages on JBoss Drools engine (and its integrated Complex 

Event Processing platform) and enhances this engine’s 

functionality to natively support rule-based situation-

awareness. Our platform allows rule-based situation 

specification (and further situation lifecycle management) by 

means of a simple rule pattern. For our purposes, situation 

management encompasses support for situation type 

specification, deployment, situation detection (which may 

involve composite situation pattern recognition) and 

situation’s lifecycle control. According to Endsley’s 
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framework (see Figure 1), our rule-based situation platform 

provides automated support for the so-called situation 

assessment phase, which comprises part of the perception level 

and the comprehension level.  

 
Figure 1. Endsley’s reference model and the Rule-Based Situation 

Platform 

The paper is further structured as follows: Section II 

discusses the notion of situation setting requirements for our 

approach; Section III presents a motivating application 

scenario in the public health domain, in which situations for 

detecting suspicious cases of tuberculosis are specified and 

managed by the proposed rule-based situation platform 

(coined SCENE); Section IV presents a user’s level view of the 

resulting platform, which is based on the specification of 

situation types; Section V presents the internal architecture of 

the platform, discussing the most important implementation 

decisions; Section VI discusses related work and finally 

Section VII presents our conclusions and directions for future 

work.  

II. SITUATIONS 

Situations are composite entities whose constituents are 

other entities, their properties and the relations in which they 

are involved [9]. Situations support us in conceptualizing 

certain “parts of reality that can be comprehended as a whole” 

[19]. Examples of situations include “John is working”, “John 

has fever”, “John has had an intermittent fever for the past 6 

months”, “John and Paul are outdoors, at a distance of less 

than 10m from each other”, “Bank account number 87346-0 is 

overdrawn while a suspicious transaction is ongoing”, etc. 

(Technically, the sentences we use to exemplify situations are 

utterances of propositions which hold in the situations we 

consider; however, we avoid this distinction in the text for the 

sake of brevity.) 

Situations are often reified (such as in [5], [8]), or ascribed 

an “object” status [11], which enables one not only to identify 

situations in facts but also to refer to the properties of 

situations themselves. For example, we could refer to the 

duration of a particular situation or whether a situation is 

current or past, which would enable us to say that the situation 

“John has fever” occurred yesterday and lasted two hours. The 

temporal aspect of situations also enables us to refer to change 

in time, thus we could say that “John’s temperature is rising” 

or that “Account number 87346-0 has been overdrawn for the 

last 15 days”. 

A situation type [11] enables us to consider general 

characteristics of situations of a particular kind, capturing the 

criteria of unity and identity of situations of that kind. An 

example of situation type is “Patient has fever”. This type is 

multiply instantiated in the cases in which instances of 

“Patient” (such as “John”, “Paul”, etc.) can be said to “have 

fever”. Thus “John has fever” and “Paul has fever” are 

examples of instances of “Patient has fever”. These examples 

reveal the need to refer to entity types such as “Patient” as part 

of the description of a situation type. The same can be said for 

“has fever” which, in this case, is defined in terms of a 

property of entities which instantiate the entity type “Patient” 

(namely “body temperature”). Detecting situations (i.e., 

instantiations of a situation type) require detecting instances of 

the entity types involved in the situation whose properties 

satisfy constraints captured in the situation type. The situation 

is said to be active while those properties satisfy constraints 

captured in the situation type. A situation ceases to exist when 

those properties no longer satisfy the defined constraints. In 

this case, the situation is said to be a past situation. The point 

in time in which a particular situation instance is detected is 

called situation activation instant and the point in time in 

which the situation ceases to exist is called situation 

deactivation instant. 

Figure 2 provides a graphical representation of the lifecycle 

of three situations instantiating the same situation type. The 

vertical axis represents the possible states-of-affairs of the 

entities in the domain of interest. The horizontal axis 

represents the passing of time. For the sake of simplicity, 

suppose we are only concerned with a single property 

“temperature” of a single entity instance “John” of type 

“Patient”, and we are interested in the situation type “John has 

fever”. This situation type is characterized when John’s 

temperature lies above a given threshold (gray area in Figure 

2).  

 
Figure 2. Example of situation instances lifecycle 

These characteristics of situations lead us to the following 

basic requirements for our situation-based approach: 

1. Situation types should be defined at design time, and 

situations instantiating these types should be detected at 

runtime;  

2. Situation types should be defined with reference to entity 

types as well as constraints on entities’ properties and 

relations; 

3. Temporal properties of situations should be considered 



 

(such as initial time, and, for a past situation, final time and 

duration). 

In addition to these requirements, we have also observed 

that the definition of complex situation types may be more 

manageable by defining these types in terms of a composition 

of simpler situation types. Thus, we also include the recursive 

composition of situation types in our approach. This allows us 

to consider different levels of situation assessment. 

III. APPLICATION SCENARIO 

Tuberculosis (TB) is one of the world’s most ancient and 

deadly infectious diseases. According to [16], about 1.4 

million people die from TB, and roughly 9 million people 

develop the disease, each year. One-third of all people on 

Earth — nearly 2.5 billion people — have a latent form of TB. 

TB spreads from person to person through air, and its 

epidemic control lies on accurate diagnosis, drug regimen, and 

prevention from bacterial exposure over healthy population by 

infected patients throughout their treatment. Public health 

programs could benefit from computational systems that help 

monitoring the population in TB focus areas in order to 

minimize risks of contagion. 

In that sense, we consider an application scenario which 

comprises the monitoring of particular patients who present a 

risk of contracting and/or spreading TB, such as: (i) persons 

who have had recent contact with any infected patients, (ii) 

persons who have declared to exhibit characteristic TB 

symptoms (clinically confirmed) and even (iii) persons who are 

already diagnosed and present the TB disease. Through a 

blood test exam called IGRA, a TB infection can be detected; 

however, a positive IGRA does not mean the patient has the 

TB disease, i.e., an infection with symptoms manifestation. A 

positive IGRA could refer to a latent infection case in which 

TB symptoms are not manifested by the infected patient. 

Monitoring patients in groups of risk and determining their 

current diagnosis situation would be critical for supporting 

decision making towards a better TB control strategy. In order 

to allow patient’s monitoring, we assume the following 

contextual data to be available (i) real-time patient’s body 

signals (temperature, blood pressure, heart rate, etc), and also 

(ii) patient’s medical records (previous diseases and past exam 

results). Based on this contextual information, we define four 

situation types regarding patients’ symptoms and diagnosis:  

1. the TB Infection Situation, which is considered to exist 

for every patient whose latest IGRA had a positive result;  

2. the Fever Situation, which is considered to exist 

whenever a patient’s temperature is above 37º C; 

3. the TB Symptom Situation, which is considered to exist 

for every patient presenting a series of recurring Fever 

Situations (intermittent fever). In fact, several other conditions 

including chills and persistent dry cough are also symptoms of 

TB. For the sake of clarity in our examples, we have simplified 

the TB Symptom Situation specification to the intermittent 

fever symptom, only; 

4. the TB Disease Situation, which is considered to exist for 

every patient which is simultaneously in the current TB 

Infection Situation and in the TB Symptom Situation. 

Several actions can be taken upon detection of any of the 

aforementioned situations. For example, upon detection of a 

TB Disease Situation, the respective patient could be contacted 

by a health professional; or, upon detection of a TB Symptom 

Situation, a warning SMS could be sent to the patient. 

IV. THE SCENE PLATFORM: USER’S VIEW 

A. Drools 

Our approach leverages the Drools general-purpose rule-

based platform which employs the RETE pattern matching 

algorithm [6] as a mechanism for rule evaluation (and in our 

case situation detection). RETE efficiently matches the 

patterns for situations against facts in the Drools Working 

Memory (WM) by remembering past pattern matching tests. 

Rules are defined in Drools by means of a domain-specific 

language called the Drools Rule Language (DRL). 

A DRL rule declaration comprises a condition and a 

consequence expression block, respectively referred to as Left 

Hand Side (LHS) and Right Hand Side (RHS). A rule specifies 

that when the particular set of conditions defined in the LHS 

occurs, the list of actions in the RHS should be executed. The 

LHS is composed of conditional elements which can be 

combined through logical operators, such as and, or, not and 

exists; and set operators, such as contains and member of. A 

conditional element can be a pattern or a constraint. A pattern 

matches against a fact in the working memory (of the specified 

class type); constraints match against properties, and are 

defined as conditions within a pattern. The RHS allows the 

declaration of procedural code to be executed when the 

conditions defined in LHS are satisfied. 

B. Situation Specification 

In order to address the requirements we have discussed in 

section II, situation types are specified in SCENE by means of 

structural and behavioral aspects, which are realized by 

Situation Classes and Situation Rules, respectively. Every 

user-defined Situation Class specializes the pre-defined class 

SituationType, which is an abstract class that addresses the 

situation temporal properties and compositional 

characteristics. 

A user-defined Situation Class should structurally define 

the particular roles played by domain entities in that situation 

type. For example, consider the Fever Situation type (Figure 

3), which is characterized when a person’s temperature rises 

above 37º C. The domain entity Person is playing a role 

(febrile) in the Fever Situation type and should be explicitly 

defined as such. In our approach, situation properties are 

tagged as roles using the @SituationRole Java annotation. 

Figure 3 depicts the Fever Situation class declaration in DRL, 

in which the domain entity Person is tagged as a situation role 

by means of a @SituationRole annotation.  

1 
2 
3 

declare Fever extends SituationType 
   febrile: Person @SituationRole 
end 

Figure 3. The Fever Situation Type Class declaration 

The behavioral part of the situation type specification 

defines how the abovementioned roles are played in that 



 

particular situation. In order to accomplish that, the roles 

declared in a situation type class are characterized by means of 

conditional patterns defined in the LHS of the Situation Rule 

declaration. Taking the Fever Situation type example, the 

Fever Situation Rule (i.e., the behavioral specification, 

depicted in Figure 4) defines febrile as any person whose 

temperature exceeds 37º C. The role febrile is specified as a 

LHS pattern identifier, which is a binding variable whose 

value is assigned for each person satisfying that particular 

condition. By means of these binding variables, we can handle 

matched facts as objects in the RHS of a rule. Therefore, LHS 

identifiers are used to handle situation participants, relating 

them to their respective situation role labels, which should 

have been previously declared in the situation type class. Note 

that identifiers names should match the property names tagged 

as situation roles in the Fever Situation class (as defined in 

Figure 3). SCENE uses this information internally to allow 

proper situation type specification (and further situation 

lifecycle control).  

When a situation rule is fully matched (i.e., the conditions 

are satisfied), all the facts bound by LHS identifiers that refer 

to situation roles comprise the so-called situation cast. The 

situation cast is the set of all the entities that participate in the 

situation (including other situations in composite situation 

types). 

1 
2 
3 
4 
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rule “Fever” 
 @role(situation) 
 @snapshot(on) 
   When 
      $febrile: Person(temperature > 37) 
   then 
      SituationHelper.situationDetected(drools, Fever.class) 
end 

Figure 4. The Fever Situation Rule 

The RHS of a situation rule invokes SCENE’s procedural 

API through the SituationHelper module. The invocation of 

the situationDetected method starts the situation lifecycle 

control (situation creation, activation and deactivation), which 

is completely realized by the platform. When a situation is 

activated, a situation fact is inserted in the working memory 

representing that particular situation occurrence.  

Situation Rules can also present particular metadata 

attributes, which are declared before the LHS block. The 

@role metadata is assigned to as situation so that the engine 

can recognize the respective rule as a situation rule. The other 

two metadata attributes are related to what we call situation’s 

snapshotting setup. The situation snapshotting refers to the 

process of saving situation cast state snaphots throughout the 

situation’s existence. Snapshotting allows composite situation 

types to constrain past situation occurrences based on situation 

cast states. 

Consider, for example, that we may need to refer to the 

temperature of John in a particular past occurrence of John’s 

Fever Situation. Since John’s temperature most probably 

changed throughout the active phase of that particular past 

situation occurrence, a decision should be made about the 

temperature value to be stored. Therefore, in addition to 

specifying the need to keep past situation occurrences, SCENE 

allows the specification of three strategies for participation 

state storage, namely first, stable and last, which are specified 

in a rule by means of the @restore metadata. Table 1 explains 

in detail the metadata attributes currently supported. 

metadata function 

@role 
Once tagged with the situation value, it allows the 

situation engine to handle the rule as a situation rule. 

@snapshot 

Turns on snapshotting for the situation cast. It must 

be turned on if the situation type takes part on 

complex situation compositions, i.e., if the situation 

type specification refers to past situation occurrences. 

(In its absence the default is “off”.) 

@restore 

Related to situation composition support. Refers to 

the participation state storage approach at situation 

deactivation. It can assume three values: (i) first: sets 

the participants’ state as it was at the situation 

detection moment (ii) stable: sets the participants’ 

state to the most stable phase throughout the 

situation’s life or (iii) last: restores the participants’ 

state as it was when the situation was deactivated. 

Table 1. Situation Rule Metadata 

With respect to the participation state storage strategies, 

consider, for example, a particular past occurrence of John’s 

Fever Situation in which John’s temperature (i) was 38º C at 

situation activation, (ii) has stabilized in 38,5º C for the 

longest period of time during situation active state and (iii) 

was 37º C at situation deactivation. Using the strategies first, 

stable and last, the following temperature values would be 

restored, respectively: 38º C, 38,5º C and 37º C. The @restore 

metadata is optional; when omitted, the stable strategy is 

considered as default. 

In our TB monitoring scenario, the TB Symptom situation 

is composed of past occurrences of Fever Situation. Therefore, 

the Fever Situation rule (Figure 4) includes the @snapshot(on) 

metadata in order to turn on its snapshotting process. Since no 

restoring strategy has been defined, the stable strategy is 

considered.  

C. Temporal Reasoning 

Drools natively provides LHS operators to correlate events 

in a temporal perspective. All thirteen Allen’s operators [2] are 

supported and also their logical complement (negation). For 

example, it is possible to define conditions in which an event 

happens before another one, or when both events overlap in 

time (among other possible event correlations). Nevertheless, 

events in Drools are always records of past occurrences; thus, 

differently from situations there are no “active” (or current) 

events. This requires special treatment of temporal operations 

involving situations, as the final time of active situations is 

undetermined. We have thus enriched the situation reasoning 

engine, to allow the definition of constraints for situations 

using the temporal operators. This allows us to apply temporal 

operators to pairs of situations, to pairs of events (as supported 

natively in Drools) and to situation-event pairs. 

Figure 5 shows all supported temporal operators. Time is 

represented in the horizontal direction and situations in black 

represent inactive situations (those that have ended). Their 

definitions rely on comparisons of the initial time and the 

converse final time of situations. 



 

 
Figure 5. Situation Temporal Relations 

The TB Symptom situation rule specification (depicted in 

Figure 6) uses the situation temporal evaluator after to 

describe subsequent episodes of fever of the same patient. The 

rule’s LHS constrains two Fever situations by means of two 

Fever situation type patterns. The first pattern constrains itself 

as a past situation (!active) and its febrile participant’s 

temperature to be greater than 38.5ºC. Since this pattern refers 

to a past situation, the participant’s restriction considers the 

temperature values as they were when the situation was 

occurring. The second pattern constrains itself as a current 

situation (active) and its febrile participant to be the same as 

the patient from the first Fever pattern (febrile == $patient). In 

addition, this pattern restricts its own occurrence to be between 

an hour and a day (after[1h,2d]) after the past fever 

occurrence ($fev1). 
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declare TBSymptom extends SituationType 
   patient: Person @SituationRole 
end 
 
rule "TBSymptom" 
@role(situation) 
 when 
  $fev1: Fever($patient: febrile, 
                  febrile.temperature > 38.5, 

                  !active) 

  $fev2: Fever(this.febrile == $patient, 
                  this after[1h,2d] $fev1,  
                  active) 

 then 
  SituationHelper.situationDetected( drools, 
                                       TBSymptom.class); 
end 

Figure 6. TB Symptom Situation 

Figure 7 depicts an example timeline of an instance of 

TBSymptom situation, in terms of two occurrences of situation 

Fever, for the same patient. Note that the situation begins to 

exist simultaneously to the subsequent occurrence of situation 

Fever, which has started two hours after the last one. When the 

second occurrence of situation Fever ceases to exist, so does 

the occurrence of situation TBSymptom. 

 
Figure 7. Example timeline for TBSymptom Situation 

The TBDisease (depicted in Figure 8) also involves 

temporal correlation over situations. It occurs when a patient 

diagnosed as having latent TB infection starts presenting any 

TB symptom. We omit here the specification of the 

TBInfection situation for the sake of brevity, since it requires a 

simple rule pattern that checks whether the patient has a 

positive result for the IGRA test. The during temporal operator 

is used to correlate the existence of a TBSymptom situation for 

a particular patient, concurrently to a TBInfection situation for 

the same patient. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

declare TBDisease extends SituationType 
   patient: Person @SituationRole 
end 
 
rule "TBDisease" 
@role(situation) 
 when 
  $tbi: TBInfection($patient: infected, 
                       active) 

  exists(TBSymptom(febrile==$patient,  
                               this during $tbi)) 

 then 
    SituationHelper.situationDetected( drools, 

                               TBDisease.class); 
end 

Figure 8. TB Disease Situation 

Figure 9 depicts an example timeline for an instance of 

TBDisease situation, in terms of a TBInfection situation 

occurrence and any overlapping occurrence of TBSymptom 

situation for the same patient. Note that the TBDisease 

situation begins to exist simultaneously to the first occurrence 

of TBSymptom situation and ceases to exist when the situation 

TBInfection ceases. 

 
Figure 9. Example timeline for TBDisease Situation 

Figure 10 depicts an example of reaction rule that is executed 

upon detection of a TBDisease situation and sends an alert 

SMS to the patient suggesting to contact healthcare assistance. 
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rule "ReactToTBDisease" 
 when 

   TBDisease ($patient: patient, 
                          active) 

 then 

   sendTBAlertSMS ($patient.CelNumber) 

end 

Figure 10. Example of reaction rule 

V. SITUATION PLATFORM REALIZATION 

A. Situation’s lifecycle management 

A situation lifecycle consists of situation detection, 

creation, activation and, possibly, but not necessarily, 

deactivation. As discussed in section IV, situation detection 

occurs when the LHS of a situation rule is satisfied (for a 

particular situation cast). Note that conditions in the LHS of a 



 

situation rule hold true while the situation exists (John’s 

temperature exceeds 37º C during the existence of John’s 

Fever Situation). However, although the situation rule may be 

executed several times while the conditions hold, only one 

situation fact should be created to represent that particular 

situation occurrence. In order to solve this issue, our approach 

separates situation detection from its creation.  

The situation’s lifecycle management strategy benefits 

from a Drools feature called Truth Maintenance System 

(TMS). The TMS automatically ensures the logical integrity of 

facts that are inserted in the working memory in the RHS of a 

rule. A logical fact exists in the working memory while the 

conditions (in the LHS) of the rule that has inserted in the 

working memory remain true, and retracted from the working 

memory when conditions no longer hold. Thus, the solution we 

have used consists on a logically inserted fact produced by the 

firing of a situation rule to reflect the situation fact state 

(existence or nonexistence). This solution has enabled us to 

detect the activation and deactivation of a situation instance by 

means of a single rule specification, which otherwise, would 

require a pair of activation-deactivation rules, as in [7]. 

Internally, the TMS maintains logical facts by verifying 

whether there is an equal object already in the working 

memory before inserting any object. This way, an object only 

becomes a logical fact in the working memory when it is 

unique; otherwise, it is discarded by the engine. Therefore, in 

our approach, a situation logical object, which we call 

CurrentSituation object, is created by the SituationHelper 

class for each time the situationDetected method is executed. 

When it is unique (in terms of its situation type and cast), a 

CurrentSituation object is inserted as a CurrentSituation fact 

in the working memory. When snapshotting capabilities are 

required for a particular situation, SCENE keeps serialized 

versions of the situation cast for each CurrentSituation objects 

creation (i.e., for each execution of the situation rule’s RHS). 

As an example, consider John’s Fever Situation. The first time 

the RHS of Fever situation rule (Figure 4) is executed for a 

particular cast (which consists of John in this case), a 

CurrentSituation object is created and immediately, through 

logical insertion, becomes a CurrentSituation fact. Further 

executions of the situation rule’s RHS for that particular cast 

(John) will only produce CurrentSituation objects which will 

be rejected as new facts by the TMS. In our example, 

serialized versions of situation casts referred to by these 

objects are kept since we have chosen to keep past occurrences 

of Fever Situation. The TMS automatically retracts John’s 

Fever CurrentSituation fact when the LHS of the Situation 

Fever rule no longer holds for John. 

Situation activation occurs simultaneously to its creation, 

and the deactivation occurs when the situation rule’s condition 

no longer holds. Deactivated situation facts consist of 

historical records of situation occurrences, which may be used 

to detect situations that refer to past occurrences. 

In order to handle situation activation and deactivation, our 

approach internally defines a pre-defined pair of rules, which 

are executed in terms of (existence or nonexistence of) 

CurrentSituation facts. The Situation Activation rule (defined 

in Figure 11) matches for every newly inserted 

CurrentSituation fact (i.e., CurrentSituation facts with 

situation attribute set to null). The RHS of the activation rule 

creates an instance fact of the Situation Type class and its 

properties are assigned by the corresponding entities involved 

in that particular situation cast. Considering our John’s Fever 

Situation example, when the activation rule is executed, an 

instance of the Fever class (Figure 3) is created and John is 

assigned to the attributed febrile. In addition, the 

CurrentSituation fact’s attribute situation now refers to the 

newly created situation type instance. This way, the activation 

rule no longer matches for that particular CurrentSituation 

fact. Upon execution of the situation activation rule, SCENE 

also generates an initiator event (ActivateSituationEvent), 

which represents the activation timestamp for that particular 

situation (and is used for situation temporal reasoning). 
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rule "SituationActivation" 
 when 

  $act: CurrentSituation(situation == null,  
                            $type: type,  

                            $castset: castset,  

                            $timestamp: timestamp) 

 then 

  SituationHelper.activateSituation(drools,  
                                       $castset, 

                                       $type,  

                                       $timestamp)); 

end 

Figure 11. Situation Activation Rule 

The Situation Deactivation rule (defined in Figure 12) 

matches for every SituationType fact yet active (attribute 

active is true) for which there’s no corresponding 

CurrentSituation. The absence of the CurrentSituation is a 

consequence of the TMS logical retraction due to the no 

longer fulfillment of the situation rule’s conditions by a 

particular situation cast. The RHS of the deactivation rule 

creates a terminator event (DeactivateSituationEvent) for that 

particular situation and also sets its transition to a non active 

state (attribute active of Situation Type class is set to false). 
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rule "SituationDeactivation" 
 when 

  $sit: SituationType(active==true) 
  not(exists CurrentSituation(situation == $sit)) 
 then 

  deactivateSituation(drools, (Object) $sit); 
end 

Figure 12. Situation Deactivation Rule 

B. Situation Profile Management 

The Situation Profile Manager (SPM) is a module that 

stores profiles for each situation specification based on 

declared metadata information previously mentioned in section 

IV. These profiles allow the situation engine to apply 

particular management strategies, such as the cast 

snapshotting and participation state storage strategies. The 

SPM assembles rules profiles by parsing the rule base at the 

execution of the session bootstrapping, capturing situation 

rule’s metadata values. The SPM also maintains the rules 

profiles throughout the situation’s lifecycle execution. 

Regarding the lifecycle of snapshot-enabled situation facts, 

the snapshotting process takes place for every situation rule’s 

LHS match, in which a serialized version of the assembled 

situation cast (tagged with a timestamp) is stored. When the 



 

situation ceases to hold, the chosen restoring strategy is carried 

on at situation deactivation (execution of the 

deactivateSituation helper method). 

C. Temporal Evaluators 

The drools native API provides an extensible way to 

implement new LHS operators. This particular feature allowed 

us to implement proper evaluators to handle the situation 

temporal relations, as presented in section IV. Our approach 

applies the Allen’s interval algebra over initiator and 

terminator situation events, which are created by the activation 

and the deactivation rules, respectively (see section V.A).  

Given the dynamic nature of a situation occurrence, in 

which situations may be related to an initiator event only 

(active situation) or related to both initiator and terminator 

events (inactive situation), the situation temporal operators 

have to consider the absence of the terminator event.  

In order to evaluate situation temporal relations, the 

situation operators’ implementation extracts the events of 

interest from situations facts parameters and then evaluates the 

situation temporal relation by means of initiators and 

terminators events (using the temporal operators currently 

provided by Drools). 

VI. RELATED WORK 

There are several approaches to situation specification, 

which have been classified into learning-based or 

specification-based and reviewed in [15]. In learning-based 

approaches, situations are identified by using AI learning 

methods, such as Bayesian Networks and Decision Trees. In 

specification-based approaches such as the one proposed here, 

situation types are explicitly defined by capturing expert 

knowledge in situation specifications.  

 Many of the specification-based approaches to situation 

such as, e.g., [7], [11], [14], [20], [21], often specify situations 

in terms of logical expressions or formal ontologies. Most of 

these situation specification approaches make use of general-

purpose languages, such as OWL and OCL. This means that 

they are not designed to natively support situation 

specification and, therefore, do not offer primitive situation 

constructs, such as the ones offered by the proposed rule-based 

situation platform. Further, in several of these approaches, 

situation types are reduced to logic propositions, failing to 

address properties of situations (such as duration) and 

temporal relations between situations. 

As discussed in [7] several approaches presented in the 

literature [10], [12], [22] support the concept of situation as a 

means of defining particular application’s states-of-affairs. 

Nevertheless, these approaches usually offer reactive query 

interfaces instead of detecting situations attentively. The work 

presented in [10] discusses a situation-based theory for 

context-awareness that allows situations to be defined in terms 

of basic fact types. Fact types are defined in an ORM (Object-

Role Modeling) context model, and situation types are defined 

using a variant of predicate logic. The realization supported by 

means of a mapping to relational databases, and a set of 

programming models based on the Java language. Although 

the design supports event triggers for situation detection, to the 

best of our knowledge and as reported in [10], this 

programming model has not been implemented. 

In our previous work, some of us have explored the rule-

based platform Jess [7] as the foundation for situation 

detection. Differently from Drools, Jess does not support 

events, which makes it limiting with respect to temporal 

reasoning. In addition, Jess also does not support the so-called 

logic facts, which would require additional support from the 

situation platform to monitor the situation lifecycle (instead of 

using native support from the foundation rule-based platform). 

Using the native support offered by Drools with respect to 

events and logic facts is beneficial since we expect 

optimizations to be more efficiently implemented in the core 

platform.  

In our earlier work some of us have also addressed issues 

involved in a distributed rule-based approach for situation 

detection (see [7], [9]). In that work, we have explored two 

distributed scenarios (beyond a centralized approach): (i) 

distributed detection with multiple engines detecting 

independent situations and (ii) a distribution scenario with a 

higher level of distribution assigning parts of the rule detection 

functionality to different rule engines. Approach (i) should be 

directly feasible with the realization patterns proposed (using 

Drools Server to connect to remote engines). Nevertheless, 

approach (ii) relies on further distribution support from the 

rules platform. In our earlier work this was provided by a 

distributed extension of Jess (DJess). Similar support is not yet 

available for Drools; should this support be available in the 

future, we expect to be able to address approach (ii) by 

adapting the rule-based situation platform accordingly. 

VII. CONCLUSIONS AND FUTURE WORK 

We have proposed an approach for the specification and 

realization of situation detection for attentive situation-aware 

applications.  We have implemented a rule-based platform for 

situation management (coined SCENE) that leverages on JBoss 

Drools engine by adding functionality to natively support rule-

based situation-awareness (the source code is available at 

https://github.com/pereirazc/scene). Situation specification 

requires a single rule pattern following the standard Drools 

rule’s constraint dialect. Situations can be composed of 

constraints over domain entities, and in addition can be 

composed of existing situations themselves. We have 

addressed the temporal aspects of applications, and included 

operators to relate situations based on their temporal aspects. 

The detection is rule-based, and is deployed on mature and 

efficient rule engine and complex event processing technology 

available off-the-shelf. The platform manages situations by 

implementing situations lifecycle control, such as situation 

activation, state maintenance and deactivation. 

An evaluation of the performance of situation detection is 

ongoing. Nevertheless, due to our previous experiences with 

the use of a rule-based approach for situation detection 

(employing Jess) [7] we expect the performance of situation 



 

detection to be adequate for most applications. As we have 

discussed earlier, the algorithms employed in pattern matching 

are optimized to avoid repeating unnecessary comparisons for 

conditions that have not been modified, reducing the effort for 

situation detection. 

In addition to providing infrastructural support for situation 

detection, we have also explored a graphical language (coined 

SML) for situation modeling. This work has been reported in 

[18], in which we present model-driven transformations from 

SML models into situation rules to be executed on our rule-

based situation platform. 

For future work we intend to continue working on our rule-

based platform improving the ease-of-use aspect without 

compromising the expressiveness of the situation specification 

approach. For example, in future versions of the situation 

platform we intend to allow situation rule specification by 

means of the rule’s LHS only. We also expect the platform to 

be able to automatically enable the snapshotting process for 

situation types taking part in others situation compositions. 
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