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Abstract—Given their ubiquity in conceptual modeling lan-
guages, it is no surprise that properties have been subject to
attention and specialized support in multi-level modeling ap-
proaches (including mechanisms such as deep characterization).
This paper examines consequences of a typology for properties
of high-order types that distinguishes them into: direct, resultant
and regularity properties. We discuss several implications of
the proposed classification considering a number of aspects of
multi-level modeling including: specialization between high-order
types, applicability to powertype variants, property change, and
potency.

I. INTRODUCTION

Conceptual models capture invariant aspects of entities in
a domain of interest. They are often defined through the
identification of the relevant types (or “classes”) of entities
that are admitted in a domain, along with the relations that
these entities may have and the features they may exhibit.
Relations and features are specified with constructs such as
“associations”, “properties” and “attributes” (in UML [15]) or
“(object and data) properties” (in OWL [16]).

Given their ubiquity in conceptual modeling languages, it is
no surprise that relations and features alike have been subject
to attention and specialized support in multi-level modeling
approaches. In fact, a key feature of multi-level modeling
techniques is the capacity to consider a class as an instance of
a metaclass and possibly assign values to properties defined
at the metaclass level. For example, if we consider Car Model
as a metaclass, with instances such as Ferrari F40 and
Volvo S60, then a property model designer may be defined
for Car Model and attributed to Ferrari F40 and Volvo S60.

Beyond this basic support for assigning values to properties
of metaclasses, some multi-level modeling techniques iden-
tify the opportunity to establish correlations or connections
between features of classes at different levels of classification,
what has been referred to as “deep characterization” [4].

Deep characterization is an important mechanism for multi-
level modeling as it enables a modeler to capture invariants at
a certain level that influence not only the level immediately
below (what would constitute a “shallow” mechanism) but
also other subsequent levels deeper in the classification level

scheme (hence the term “deep” characterization). For exam-
ple, if we conceive Animal Species as a metaclass, whose
instances include the classes Platypus, Dog, and Lion, then
whether the lion Cecil has the property of being warmblooded
is in fact determined by a property of its classifying species
[9] (i.e., determined by Lion being a species of warmblooded
animals). If we consider Mobile Phone Model as a metaclass,
whose instances include iPhone 12 and Samsung S21, we may
include screen size as a property of Mobile Phone Model,
and assign values to it for iPhone 12 and Samsung S21 (6.6
and 6.2 inches respectively). The screen sizes of instances of
iPhone 12 and Samsung S21 will then follow those values.

Different multi-level modeling techniques address deep
characterization in different ways. In MLT and in the MLT-
based language ML2, this phenomenon is addressed through
“regularity attributes” [6], [10]. In Melanie [2], they are
supported through a combination of the notions of “po-
tency” along with attribute “durability” and “mutability”.
In MetaDepth [7] they are also supported by potency and
durability. (See [9] for a review of several MLM approaches
with respect to their support for this kind of attribute.)

This short paper examines different phenomena involving
properties in multi-level modeling building up on the typology
for properties for metaclasses identified earlier in [10]. We
discuss here some implications of that typology. In particular,
we show that the different types of properties have different
implications for their inheritance along specialization hier-
archies, for their applicability in powertype variants, their
(im)mutability and use in potency-based schemes.

This paper is further structured as follows: Section II
establishes basic terminology and presents the typology of
properties introduced originally in [10], Section III discusses
various implications of the typology for multi-level modeling,
and Section IV concludes this paper.

II. BACKGROUND

A. Preliminary Considerations

Establishing uniform terminology for the phenomena we
are considering here is a challenging task. We settle here to



establish some basic terminology for the purpose of this paper.
We will adopt here the term “property” in alignment with
the UML, which introduces it in the context of a classifier
as follows (extracted from [15]): “A Property related by
ownedAttribute to a Classifier [...] represents an attribute and
might also represent an association end. It relates an instance
of the Classifier to a value or set of values of the type of
the attribute.” By doing so, we can address at the same time
UML’s attributes and association ends. The same account is
also suitable for OWL object properties (which can roughly be
understood as navigable association ends) and data properties
(which can roughly be understood as attributes typed with
datatypes).

Further, we consider each type to be characterized by an
intension (or principle of application [11]), which is used
to judge whether the type applies to an entity (e.g., whether
something is a Person, a Dog, a Chair). If the intension of a
type t applies to an entity e then it is said that e is an instance
of t. The set of instances of a type is called the extension of
the type [12]. We admit that types may have a time-varying
extension, when entities that fall under the type’s intension are
created and destroyed.

Finally, we classify types of a multi-level model into orders.
The types whose instances are individuals are called first-
order types. The types whose instances are first-order types are
called second-order types, and so on. Second-order types (also
termed metaclasses), third-order types (also termed metameta-
classes), and so on, are termed collectively high-order types.

B. Typology for Properties

Following [10], we make use of examples in the domain of
biological species to illustrate the various types of properties.
The modeling of species (and animal breeds alike) is evoked
as a typical example of multi-level modeling in the literature
(see, e.g., “tree species” in [15] and “dog breed” in [3]). We
also employ examples of product types [6].

Consider the example shown in Figure 1, using a notation
inspired in UML. Bird is specialized in two subtypes, namely,
Blue Macaw and Golden Eagle. According to this model,
particular birds have a particular birth date, a particular
height, and a name. This model uses the powertype pat-
tern: the two subtyping relations between the latter types
and Bird are part of a generalization set related to the
powertype Bird Species. The relation that connects Bird
and Bird Species represents instantiation, declaring that the
instances of Bird are classified by instances of Bird Species.
Furthermore, the powertype Bird Species is connected to the
type Bird by being referred to in the generalization set spe-
cializing Bird and containing the subtypes Blue Macaw and
Golden Eagle. Hence, Blue Macaw and Golden Eagle are
instances of Bird Species. (Bird Species is a second-order
type, whose instances are first-order types.) Two instances of
Bird in this model are Blu (a particular Blue Macaw) and Joe
(a particular Golden Eagle). The instances are related to their
types through dashed arrows labeled instance of.

Figure 1. Bird Species example.

Note that instances of Bird Species provide specific val-
ues for all the general properties that characterize the type
Bird Species. For instance, the type Golden Eagle may
have a number of living individuals = 250,000, and an
average height = 85 centimeters. Notice that these are not
properties of particular birds (e.g., Joe does not have an aver-
age height, or a number of living individuals), but properties
of each species of birds as a whole. Indeed, properties such as
number of living individuals or average height are properties
of instances of Bird Species that result from properties of
the instances of Bird (e.g., the average height of a particular
species such as Golden Eagle is derived from individual
heights of particular instances of Golden Eagle). We term
these properties resultant properties of the species. They are
derived (or derivable) from the extension of the type (the
population of birds and their properties). A fully specified
resultant property includes the definition of the means for
derivation, e.g., in terms of the counting of instances or any
other form of aggregation of values of properties of a lower-
level type.

In contrast, a property such as feeding habit for
Bird Species capture regularities over the instances of
a particular type. When declaring that feeding habit is
"carnivorous" for Golden Eagle, we are capturing that
all instances of that type are carnivores. To be precise,
the type Golden Eagle is not itself a carnivore; it has the
property of having instances that exhibit that property. In
other words, it has the property of bestowing to all its
instances a particular feeding habit1. We term here these
properties regularity properties. The aforementioned property
screen size of Mobile Phone Model is another example of
regularity property. Regularity properties can be understood
as parameters in the intension of the instances of the types
that have it. Since regularity properties affect the intension of
instances of a type, they can only be defined for high-order
types [6] (thus neither for individuals nor for first-order types).

Finally, a property such as the species name or the year in
which it was officially recognized are properties of yet a third

1This model reflects the assumption of “intrinsic biological essentialism”
that there are some essential intrinsic properties shared by members of a
species [8].



kind. For instance, being officially recognized as a species in
1760 and being named Aquila chrysaetos are properties of
the type Golden Eagle and not a property that any individual
instance of Golden Eagle has. We term these properties direct
properties.

III. IMPLICATIONS OF THE TYPOLOGY OF PROPERTIES

A. Implications to Specialization

When a type specializes another type, all instances of
the subtype are also instances of the supertype. This means
that the intension of the subtype includes the conditions in
the intension of the supertype; often, subtypes add further
classification criteria to a supertype, restricting those instances
of the supertype that fall under the subtype; in this case,
specialization may be termed “proper specialization” [6].

This basic understanding of specialization allows us
to draw a rather straightforward consequence for reg-
ularity properties: whenever a supertype is given a
value to a regularity property—say, when we estab-
lish that Mobile Phone Model is characterized by the
screenSize regularity property, and iPhone X instantiating
Mobile Phone Model has screen size=5.85 inches—all its
subtypes (such as Red iPhone X) impose that same value on
their instances. In other words, since regularity properties
establish invariant aspects of the instances of a type, and the
instances of a subtype are also instances of the supertype, the
invariants defined for the instances of the supertype must also
be respected by instances of the subtypes.

The same cannot be said of resultant properties. Since the
value of a resultant property depends on the instances of
a type, and subtypes may have extensions that subset the
extensions of the supertype, the value of a resultant property
given for a supertype is not necessarily preserved in subtypes.
For example, currently, the number of living individuals
of the supertype Macaw is greater than that of Blue Macaw (as
this is not the sole species of macaw with living individuals).
Further, the average height of Blue Macaw differs from that
of its subtypes Male Blue Macaw and Female Blue Macaw.
Despite that, since a resultant property may be derived from
properties that characterize the supertype (in the latter case,
height that characterizes Bird), and all instances of the
subtype inherit those properties, it is possible to extend
the definition of the resultant property—but not its value
attribution—to all subtypes of the instances of the high-order
type characterized by the resultant property. In this case,
Male Blue Macaw and Female Blue Macaw may be given a
value for average height even though they are not instances
of Bird Species. In order to explain this, it is useful for
us to consider the relation of subordination between high-
order types as discussed in MLT [6]. A high-order type is
subordinate to another high-order type if, and only if, each of
its instances specialize an instance of the superordinate high-
order type [6]. For example, Bird Type by Species and Sex
is subordinate to Bird Species, and hence its instances
(Male Blue Macaw and Female Blue Macaw) specialize an in-
stance of Bird Species (Blue Macaw). We can then conclude

that subordinate high-order types may “inherit” resultant prop-
erties from their superordinate types.

Differently from regularity and resultant properties, di-
rect properties are not “inherited” in any sense, as they
pertain solely to the type, and not its instances. Consider
that Mobile Phone Model is characterized by a launch date
direct property. The fact that iPhone X has launch date
11/03/2017 does not determine the launch dates of types
specializing it. In fact, the notion of a launch date for subtypes
of iPhone X may not even be meaningful; consider the case
of Refurbished iPhone X.

In summary, the typology of properties of high-order types
we adopt here has the following consequences: (i) the values
of regularity properties are preserved in specialization, (ii)
resultant properties are inherited by subordinate high-order
types (but their values are not preserved), and (iii) direct
properties are not “inherited” in any sense.

B. Implications to Powertypes

The typology of properties of high-order types also has
consequences to the variants of the powertype pattern iden-
tified in [6]. More specifically, we refer here to the variants
of Cardelli [5] and Odell [14], which lead to the following
relations between types [1]:

A powertype relation to capture the notion of powertype as
defined by Cardelli [5]: a type pt is powertype of a (base)
type t iff all instances of pt are specializations of t and all
possible specializations of t are instances of pt. Powertypes
in this sense are analogous to powersets2. The powerset of
a set A is a set that includes as members all subsets of A
(including A itself). As an example of Cardelli powertype
consider Bird Type defined in such a way that all possible
specializations of Bird (including Bird) are instances of
Bird Type.

A categorization relation between types was defined to
reflect Odell’s notion of powertype [14]. Differently from
Cardelli’s, Odell’s definition excludes the base type from
the set of instances of the powertype. Further, not all
specializations of the base type are required to be in-
stances of the powertype. Odell’s definition is more sim-
ilar to the notion of powertype that was incorporated in
the UML. There may be specializations of the base type
that are not instances of the categorizing higher-order type.
For example, Bird Type by Species and Sex (with instances
Male Sparrow and Female Blue Macaw among many others)
categorizes Bird. Bird Type by Species and Sex is not a
(Cardelli) powertype of Bird since there are specializations of
Bird that are not instances of Bird Type by Species and Sex
(e.g. Blue Macaw and Golden Eagle).

From the definition of a Cardelli powertype, we can sug-
gest that Cardelli powertypes should not be characterized by

2Notice that we use the term ‘analogous’ and not ‘identical’. Powertypes
are analogous to powersets in the sense that they have as instances all possible
subtypes of a base type, including that base type itself. However, we do not
hold an extensional view on types. In fact, we reject the idea that, in general,
for a powertype t of base type t ′, there should be an instance of t corresponding
to any set belonging to the powerset of the extension of t ′.



regularity properties. This is because there are, in general,
many ways to constrain the various properties of instances of
a base type, and hence, these many ways cannot be covered
by a single regularity property. For example, if we define
that screen size is a regularity property defined in the type
Mobile Phone Type it is not possible for Mobile Phone Type
to be a powertype in Cardelli’s sense since there are pos-
sible specializations of Mobile Phone that do not impose
constraints over the screen size of their instances (e.g.,
5G Phone).3

The same constraint does not apply to resultant properties
in the case of Cardelli powertypes; as long as these are derived
in terms of properties of the base type, they can in principle
be defined for all subtypes of the base type.

Since Cardelli powertypes have a “formal” (rather then
domain-specific) nature, the direct properties in Cardelli pow-
ertypes are restricted to general properties of types such as
name, date of creation, etc.

C. Implications to the Dynamics of Properties

The typology of types also has consequences to their
dynamics in time. Regularity properties are immutable in
principle because, by definition, changing their value alters
the identity of the type [6]. Any alleged change of the value
of a regularity property is actually the creation of another type.
In turn, the value of a resultant property may change as long as
the extension of the type changes, or the property of instances
in the extension changes. In the special case that the extension
of a type is constant and the resultant property is defined
in terms of immutable properties of a lower-level type, then
we have an immutable resultant property. Direct properties,
in turn, may be mutable (e.g., is currently in production
for Mobile Phone Model) or not (e.g., launch date), in a way
that does not depend on the instances of lower-level types.

D. Implications to Potency-based Approaches

Here we discuss some consequences to potency-based ap-
proaches. More specially, we select Melanie [2], [13] as a
prototypical exemplar of potency-based approach given its his-
torical role. Melanie addresses deep characterization through a
combination of the notions of “clabject” and “potency” along
with attribute “durability” and “mutability”.

The notion of “clabject” is founded on the observation that
every instantiable entity has both a type (or class) facet and an
instance (or object) facet which are equally valid. For example,
Golden Eagle can be considered a clabject since it has an
instance facet (it is an instance of Species) and a type facet
(it classifies Joe as an instance of Golden Eagle).

Each clabject has a potency assigned to it. The potency of a
clabject is an integer that defines the depth to which a model
element can be instantiated. When a clabject is instantiated
from another clabject the potency of the created clabject is

3Regularity properties would only be admissible in Cardelli powertypes in
the very special case that the regularity property may take on a value from
the space of all possible constraints applicable to the base type—a sort of
trivial or catch-all regulation.

given by the original clabject potency decremented by one.
Clabjects have potency equal to zero indicating they cannot
be instantiated, which is the case of individual objects.

The attributes that characterize a clabject have both a “dura-
bility” and a “mutability” assigned to them. The durability
defines the endurance of the attribute over the instantiation
chain. It is a non-negative integer that is decremented by one
when the clabject characterized by the attribute is instantiated.
When durability reaches zero the instantiated clabject no
longer is characterized by that attribute. The mutability of
an attribute defines how often its value can be changed over
the instantiation chain. Like durability, mutability is a non-
negative integer that is decremented by one when the clabject
is instantiated. When mutability reaches zero, the value of the
attribute can no longer be changed and must be the same as
in the level above. The default value for both durability and
mutability is the potency value of the owning clabject.

The simplest case is that of durability and mutability equals
to one. This corresponds to a shallow characterization, and can
be used to represent direct or resultant properties.

More complex scenarios can be captured combining dif-
ferent values of durability and mutability. Consider, for ex-
ample, a type Mobile Phone Model with potency 2. An
attribute screen size with durability 2 and mutability 1
will be given a value at the first instantiation (e.g., stating
that the iPhone X has screen size equal to 5.85 inches),
and that value will determine the value of screen size
for the instances of instances of Mobile Phone Model (thus,
all instances of iPhone X have a screen size of 5.85
inches). In our view, this representation captures concisely
the constraint relating: a property defined for the first-
order type Mobile Phone (screen size), and; a regularity
property of Mobile Phone Model (instances screen size).
This constraint is captured as a single attribute with dura-
bility 2 and mutability 1 in a clabject with potency 2
(Mobile Phone Model).

The combination between durability and mutability greater
than one may also be used to capture scenarios in which
homonymous direct attributes characterize both a type and its
instances. For example, consider a type Bird Species with
potency 2. An attribute name with durability and mutability 2
may be defined in Bird Species to represent that instances
of Bird Species have a name (e.g. “Aquila chrysaetos”) and
that instances of instances of Bird Species (i.e., instances of
Bird) also have a name (e.g. “Pat”). Therefore, the attribute
name with durability and mutability 2, conflates the direct
property name of the second-order type Bird Species and
the property name of the first-order type Bird. It is important
to notice that there is no relation or constraint linking the
values of the attribute at type level with the possible values
of attributes at object level, i.e., the name of the species does
not constrain the possible names of the specific birds.

A feature of potency-based approaches in general (and of
Melanie specifically) is that they allow the modeler to omit the
representation of base types as a way of reducing complexity.
In these scenarios, the direct attributes of the base types are



represented as attributes of high-order types with durability
and mutability greater than one. For example, in order to
capture that a specific bird has a birth date, without the
need of representing the type Bird, the attribute birth date
may be defined as an attribute of Bird Species having both
mutability and durability 2, so that instances of instances of
Bird Species may define values for the attribute birth date.
An undesirable effect of this approach is that it is possible to
set a value to the attribute birth date at the species level,
which is meaningless (a species does not have a birth date).

Note that we have a case of construct overload here: the
language does not provide means to distinguish between (i)
the cases in which attributes with durability and mutability
greater than 1 are used to conflate direct properties of types
in different levels (with possibly different values at various
levels), and (ii) the cases in which those attributes are used
to represent, in the higher-order type, properties of omitted
lower-level types.

IV. CONCLUSIONS

Not all properties of high-order types behave the same. We
have shown that attention to the role of properties in estab-
lishing the relation between the various levels in a multi-level
model can provide us with some guidelines for their usage.
We have leveraged here the typology of properties defined
originally in [10], which distinguishes them into regularity
properties, resultant properties and direct properties.

We have argued that regularity properties impose constraints
for their instances’ instances that are preserved throughout
specialization hierarchies. More specifically, when a value is
attributed to a regularity property for a supertype, this value is
the same for all its subtypes. Further, they are immutable and
not applicable to Cardelli powertypes. We have discussed that
a specific type of regularity property can be captured using
durability greater than one in a potency-based approach; but
the same specification strategy is also used for other modeling
scenarios not involving regularity (e.g., to omit base types at
lower levels), which may hinder the interpretation of models
using this specification strategy.

In their turn, resultant properties may be “inherited”
throughout subordination hierarchies, are in general mutable
and may be applied to Cardelli and Odell powertypes alike.

Finally, direct properties are not “inherited” in any sense;
they correspond simply to properties in shallow classification
schemes (or to attributes with durability and mutability equal
to one in a potency-based approach; these attributes, once
given a value in an instance of a clabject, no longer belong to
the type facet of the clabject as discussed in [13]).

Given that identifying the type of property gives us some
guidelines for their usage in a high-order type, future work
could try to establish the applicability of these distinctions
as constructs in multi-level modeling languages, regardless of
whether they are powertype-based or potency-based. Ideally,
the modeler should be able to express the type of property
they indent to represent (e.g., through specialized syntactic
constructs) and reap benefits of some automated support. To

the best of our knowledge, the distinctions discussed here are
not yet incorporated fully in the various approaches.
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