
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221389545

A Multi-Agent System for Knowledge Delivery in a Software Engineering

Environment.

Conference Paper · January 2005

Source: DBLP

CITATIONS

3

READS

20

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Standards Harmonization View project

Knowledge Management in Software Testing View project

Ricardo de Almeida Falbo

Universidade Federal do Espírito Santo

172 PUBLICATIONS 1,661 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ricardo de Almeida Falbo on 31 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221389545_A_Multi-Agent_System_for_Knowledge_Delivery_in_a_Software_Engineering_Environment?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221389545_A_Multi-Agent_System_for_Knowledge_Delivery_in_a_Software_Engineering_Environment?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Standards-Harmonization?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Knowledge-Management-in-Software-Testing?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-d885031ed8881888c4c11dce356cb11a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTM4OTU0NTtBUzoxMDI5MjEzNzkyNTQyODFAMTQwMTU0OTc3NzcyMw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Multi-Agent System for Knowledge Delivery in a Software Engineering
Environment

Ricardo de Almeida Falbo, Juliana Pezzin, Mellyssa De Martins Schwambach
Computer Science Department, Federal University of Espírito Santo

Fernando Ferrari Avenue, CEP 29060-900, Vitória - ES – Brazil
falbo@inf.ufes.br, juliana_pezzin@hotmail.com, mellyssa_s@hotmail.com

Abstract. Knowledge Management (KM) main goals are
to promote growth, communication, preservation and
sharing of knowledge. In KM, software agents can be
used to connect organizations’ members to the knowledge
available. Agents can help especially on knowledge
filtering and proactive dissemination (knowledge
delivery). When KM services are integrated into a Process
centered Software Engineering Environment (PSEE),
agents can act based on the defined process. They can
search and proactively present knowledge items that
might be relevant for the developer’s current task. This
paper presents a multi-agent system developed for
supporting knowledge delivery in ODE, a PSEE.

1. Introduction

Software development is a knowledge intensive effort. In
order to produce quality software, software organizations
have recognized that it is essential to better use their
organizational software engineering knowledge. In this
context, knowledge has to be systematically collected,
stored in a corporate memory, and shared across the
organization. Knowledge Management (KM) systems
facilitate creation, access and reuse of knowledge, and
one of their main goals is to provide relevant knowledge
to assist users in executing knowledge intensive tasks.

In KM, software agents can be used to connect
organizations’ members to the knowledge available [1].
Among other, agents can help on knowledge filtering and
dissemination in a proactive manner.

In the context of software development, KM can be
used to manage the knowledge and experience generated
during software processes. Although every software
project is unique in some sense, similar experiences can
help developers perform their activities. Reusing
knowledge can prevent the repetition of past failures and
guide the solution of recurrent problems [2].

But, KM must be embedded in processes. Thus, in the
case of software development, KM activities should be
integrated into the software process [3]. Since Process-
centered Software Engineering Environments (PSEEs)

integrate tool support for software development with
support for software process modeling and enactment, it
is natural to integrate KM facilities into a PSEE [2, 4]. If a
software process is defined, it is easier to implement
proactive dissemination (knowledge delivery). In this
case, based on the process, agents can act in a proactive
manner, searching and offering relevant knowledge items
for the developer’s current task.

In this paper we present a multi-agent system (MAS)
developed for delivering knowledge in a PSEE called
ODE [5]. ODE has a KM infrastructure that offers
services for knowledge creation, capture, retrieval, access,
delivery, use, and preservation. The MAS aims to monitor
developer’s (users of a PSEE) actions, and based on the
software process activity being performed, it proactively
presents potential relevant knowledge items.

In section 2, we discuss briefly the synergy between
KM, PSEEs and agents. Section 3 presents ODE and its
KM infrastructure. This section also discusses some
problems detected in the first initiatives of using agents to
implement knowledge delivery in ODE. To deal with
some of those problems, an infrastructure for agent
development in ODE, called AgeODE, was built. This
infrastructure is presented in section 4. Section 5 presents
the MAS developed for proactively disseminating
knowledge in ODE. Finally, in section 6 we discuss
related works, and in section 7, we report our conclusions.

2. KM, SEEs and Agents: A Synergy

Nowadays, many software organizations have recognized
that their main assets are their intellectual capital. In those
organizations, staff turnover rates are high, and they face
the challenge of sustaining the level of competence
needed to compete in the software development market.
Knowledge in software engineering is diverse and it
grows rapidly. It involves knowledge about technologies,
application domains, local policies and practices, among
others. In this context, organizations are faced with the
problem of providing employees quickly and efficiently
with the knowledge required to successfully perform their

tasks. Also, we have to consider that most of the time,
team members are making decisions based on their
personal knowledge and experience, or knowledge gained
using informal contacts. This process is inefficient for
large organizations. In fact, software organizations have
problems in identifying the content and location of the
knowledge, and using it. Thus, an improved use of this
knowledge is the main motivation for using Knowledge
Management (KM) in software engineering [6, 4].

Although KM has being applied in software
engineering for more than ten years, only few
implementations are found in current software
organizations, due mainly to the lack of a systematic
integration into the every-day developer’s activities [4]. In
fact, to be effective, KM should be integrated into the
software process [3]. Since Process-centered Software
Engineering Environments (PSEEs) are software systems
that assist in the modeling and automation through
enactment of software processes [7], they seem to be the
most promising platform for integrating KM into the
software process. On the other hand, as the complexity of
software processes increases, the use of knowledge during
software development becomes essential to support
software development activities. This claim represents the
basis for integrating KM into PSEEs. This way, PSEEs
and KM complement each other in order to assist
software developers during the software process.

Even when KM is integrated into a PSEE, we have to
consider that we still have a problem: knowledge
dissemination, especially as the volume of knowledge
items grows. In general, we can distinguish between two
approaches: knowledge access (passive KM systems) and
knowledge delivery (active KM systems) [4, 8]. In a
passive KM system, users have to explicitly query it for
relevant knowledge items, whenever they have a need.
This approach seems to be insufficient for software
organizations, because users might be unaware that a
relevant knowledge item exists, or they are often too busy
to look for it, or they might be unable to query an
information system appropriately, among others [4, 9]. In
contrast, an active KM system distributes knowledge
items to users whenever it is necessary for their work [4].
In fact, knowledge delivery complements the knowledge
access approach. While knowledge access is a user-
initiated search, knowledge delivery is a system-initiated
presentation of knowledge items intended to be relevant
to the user’s task [8].

In the context of knowledge delivery, agents play an
important role. As long as knowledge delivery concerns
proactively presenting relevant knowledge that helps
workers do their jobs [9], autonomous agents seem to be a
very useful approach to deal with this problem. But, to do
that, the KM system must be aware about the enactment

of the software process. Then, the agents of the KM
system should be immersed in a PSEE.

In the next three sections, we discuss how we explore
the synergy between PSEE, KM and agents in ODE, a
PSEE.

3. ODE: An Ontology-based SEE

ODE (Ontology-based software Development
Environment) [10] is a PSEE, which is being developed at
the Software Engineering Laboratory of the Federal
University of Espírito Santo (LabES). It is implemented
using only free software, including Java, PostgreSQL and
Linux.

As its name indicates, ODE is developed based on
some software engineering ontologies, and has several
tools, such as tools supporting software process
definition, resource allocation, estimation, risk analysis
and object modeling, among others.

To support KM in ODE, a KM infrastructure [5] was
developed. As shown in Figure 1, the organizational
memory (OM) is at the core of this infrastructure.
Arranged around it, KM services are provided to support
the main activities of a general KM process: creation and
capture, retrieval and access, delivery, use, and
maintenance of organizational knowledge.

Figure 1 - ODE’s KM Infrastructure.

ODE’s OM is composed of several knowledge
repositories, which store different types of knowledge
items that are relevant to software development, including
artifacts, lessons learned, and message packages [5].

The KM services are grouped in two categories:
general services, which are actually incorporated to ODE
as a whole, and tool specific services, which cannot be
made available to the environment, because they need to
be customized to a specific tool [10]. General services
include [10]: (i) knowledge creation and capture - offers
facilities to capture knowledge items (artifacts, discussion
packages and lessons learned); (ii) knowledge retrieval

Organizational
Memory

Knowledge
Delivery

Knowledge
Use

Knowledge
Maintenance

Knowledge
Creation and

Capture

Knowledge
Retrieval and

Access

and access - supports access to knowledge items through
searching; (iii) knowledge use - deals with the feedback
about knowledge items’ utility; and (iv) knowledge
maintenance - concerns managing the knowledge
repositories based on users’ feedback.

Knowledge delivery is the tool specific service,
because it is not possible to provide proactive knowledge
dissemination without knowing details about the task
being done. Thus, it is a service that must be implemented
in each tool with KM support [10]. In ODE, agents are
being used to implement this service.

The initial proposal was to have agents monitoring the
users’ actions when they were using specific tools. In this
case, agents see what users are doing, and inform them
about potential relevant knowledge items. In each tool
with KM support, there might be an agent [10]
responsible for knowledge delivery. This approach was
implemented in some of ODE’s tools, namely: quality
control [10], resource allocation, and risk management
[11]. But, when developing those agents, some problems
were detected, such as:
P1. Each agent was built in a different way by each one

of the developers. There was neither standardization
nor uniformity in agent building, causing integration
problems;

P2. Each developer starts from the scratch in the arduous
task of building agents. Therefore, there wasn’t any
form of reuse;

P3. Since the KM system has to track the software
process activities, there is also the need for a general
agent monitoring the user. This agent should interact
with the other agents that act in the specific tools;

P4. Some tools cover complex tasks, and we need a
multi-agent system (MAS) acting in this tool, instead
of a single agent.

 Those problems can be summarized in one: agent
integration. Agent integration has to take care about
uniform ways of agents communicating, presenting and
acting. To deal with agent integration, we built AgeODE,
an infrastructure to support the development of agents
embedded in ODE.

4. AgeODE: ODE’s Infrastructure for Building
Agents

Although there are several infrastructures supporting
agent building, none of them is bound for building agents
embedded in a SEE. Thus, to fulfill this gap in ODE, we
developed AgeODE.

AgeODE was defined as a layer over JATLite [12],
using some of its classes, mainly to treat agent
communication. Moreover, AgeODE: (i) defines some

classes of agents that are potentially useful in the context
of SEEs, (ii) defines how communication between agents
occurs, and how agents access the objects in the SEE’s
repository (that is, the objects that are part of their
knowledge bases), and (iii) establishes how the agents’
internal architecture is.

Agent communication in ODE follows the same
client-server model defined in JATLite: client agents use
the routing service offered by a server agent, called
router. Thus, specializing the main agent classes of
JATLite (RouterClientAction and RouterAction), there are
two classes of AgeODE: ClientAg (Client Agent) and
RouterAg (Router Agent), as shown in Figure 2.

ClientAg gives to AgeODE’s client agents the same
features of JATLite’s client agents, offering services to
send and receive other agents’ messages. RouterAg works
as a message router. This type of agent supplies services
to name, address and locate agents in a multi-agent
system. With a router, agents do not have to know other
agents’ addresses nor how to communicate with them.
These tasks are under the responsibility of the router that
works as a communication bridge among the agents
linked to it.

The communication protocol used for agent
communication in AgeODE is KQML (Knowledge Query
and Manipulation Language) [13], since JATLite already
adopts this language. KQML messages in AgeODE, as in
JATLite, are implemented in the following way: each
message is a structure that has several fields of the string
type, one for each parameter of the message. To compose
a KQML message, an agent should fill out the
corresponding fields and send it. When receiving a
message from another agent, the receiver agent interprets
it according to the guidelines of KQML.

Being a generic infrastructure for agent development,
JATLite does not define other classes of agents; it only
separates them into clients and server. However, in the
context of SEEs, it is interesting to provide a basic set of
agent classes including features that are useful in several
situations in a SEE. Thus, four classes of client agents
were proposed for AgeODE, as shown in Figure 2.

Interface Agents (InterfaceAg) aim to offer to SEE’s
users a friendlier interface, with proactive characteristics.
An Interface Agent detects the users’ actions when using
an interface of the environment (or of one of its tools),
and based on that, they act.

An User Agent (UserAg) uses the knowledge that it
has about a certain user to support him on performing his
tasks. It should be able to establish the user’s profile,
looking for relevant features of the user. An user agent
typically interacts with the user that it represents, and aids
him to do tasks and to make decisions.

Information Agents (InformationAg) are responsible
for performing some system functionality. Its main task is
to look for information and to accomplish tasks inside the
SEE.

Finally, the Coordinator Agent (CoordinatorAg) aims
to coordinate the tasks being executed at a given moment
by a set of agents in the SEE. For such, it should be able
to distribute tasks to agents, to consolidate results of
tasks, to retrieve information from one or more dispersed
agents in the society, and to know the agents (and their
specific capabilities/abilities) that are under its
coordination domain.

Figure 2 - Agent Classes in AgeODE.

Since a concrete client agent for an ODE’s application
can be of several types, there are also interfaces
associated to the client agent types of AgeODE. This way,
if an agent has features of both an Interface Agent and an
User Agent, then it can be implemented, for example,
inheriting from the InterfaceAg class and realizing the
UserAgInterface interface.

Finally, it is worthwhile to point out that, because an
Interface Agent has to capture events from the SEE’s user
interfaces (UI), we need to establish a way to agents
monitor these UIs. In AgeODE, it is done by observer
objects that are associated to interface agents. Since
agents and the SEE are isolated computational processes,
we decided to designate to observer objects the
responsibility for monitoring UI events. Observers run in
the SEE and intercept UI events, sending via sockets,
messages to its corresponding Interface Agent that
becomes aware about the user’s actions and acts properly.
This way, observers act as the Interface Agent’s
perception mechanism in the environment, capturing UI
events in a way that the agents and the SEE are actually
implemented as separated computational processes.

Using AgeODE, two aspects of the agent integration
problem (P1 and P2) listed in section 3 were treated. But,
we also need to deal with the other two aspects (P3 and
P4). To do that, we established a multi-agent system
(MAS) basic architecture for knowledge delivery in ODE,
which is discussed next.

5. A MAS for Knowledge Delivery in ODE

As previously mentioned, in ODE, knowledge delivery is
implemented using agents. Each tool with knowledge
delivery facilities must have an agent or a MAS acting in
it (P4). Also, there must be some general agents that are
useful for all the tools (P3). To deal with these
requirements, we proposed a MAS general architecture
for knowledge delivery that consists of three general
agents, besides the tool specific agents: the Personal
Assistant Agent, the ODE’s Router Agent, and the Similar
Project Identifier Agent.

The Personal Assistant Agent (PersonalAssistantAg)
accompanies an ODE’s user since the moment he
accesses the environment until the moment he leaves it.
This agent knows the software process, and the tools that
can be used in each one of its activities. Moreover, it
knows the user, and establishes his profile in the
environment, allowing the user to access the tools that he
was using the last time he used ODE. This agent also
knows the specific agents of each tool, if they exist, and it
is responsible for starting these agents when a tool is
initiated. PersonalAssistantAg is implemented inheriting
from AgeODE’s InterfaceAg class and realizing
UserAgInterface and CoordinatorAgInterface.

The ODE’s Router Agent (ODERouterAg) is
responsible for agent communication in ODE. As
discussed before, communication between agents in
AgeODE requires a Router Agent. This is the role of
ODERouterAg, which inherits from RouterAg.

Finally, since in KM, in general, it is very important to
identify similar past projects to present relevant
knowledge items, there is an agent, called Similar Project
Identifier Agent (SimilarProjectIdAg), which is
responsible for identifying similar projects to a given one.
It is a subtype of AgeODE’s InformationAg, and all
agents that need to know about similar projects must
interact with it.

Beyond these three agents, each tool with knowledge
delivery services has to have its own agent or MAS,
according to the complexity of the task being supported.
When a MAS is necessary, one of its agents must be a
Coordinator Agent. This coordinator is responsible for
coordinating the tool’s internal agents, and also for
interacting with the PersonalAssistantAg and with the
SimilarProjectIdAg.

RouterAg

RouterClientAction
(from JATLite)

RouterAction
(from JATLite)

InterfaceAg
observer

UserAg
user

InformationAg CoordinatorAg

ClientAg 2..*

0..1

InterfaceAgInterface
<<Interface>>

UserAgInterface
<<Interface>>

InformationAgInterface
<<Interface>>

CoordinatorAgInterface
<<Interface>>

This approach was followed to reengineer the
knowledge delivery services of two ODE’s tools: human
resource allocation and risk management, as shown in
Figure 3. The first one has only one agent acting in it,
since the task is relatively simple. The second has a MAS
embedded in it, because it supports a more complex
activity that, in fact, is decomposed into sub-activities
with some complexity.

Figure 3 - ODE’s MAS for Proactive Knowledge
Dissemination.

In the Human Resource Allocation Tool, the Human
Resource Allocation Agent (HRAllocationAg) supports
the task of allocating human resource to project activities.
This agent suggests the resources to be allocated for a
specific activity, based on the project team, the
competencies of each member and past allocations
already done in similar past projects. Because it is
responsible for aiding to perform a task, it is an
InformationAg. But it has also to monitor the tool’s
interface. Then, it realizes the UserAgInterface. The
complexity involved in this task is not so high and, then,
only an agent acts in this tool. This agent interacts with
the PersonalAssistantAg, and since it uses similar past
projects to give its suggestions, it also interacts with the
SimilarProjectIdAg.

To support knowledge delivery in risk management,
there is a MAS composed of four agents, as shown in
Figure 3. This MAS is embedded in GeRis, the ODE’s
risk management tool [11]. GeRis supports a risk
management process composed of the following activities
[11]: (i) risk identification - attempts to establish risks to
the project; (ii) risk analysis - concerns analyzing the
identified risks, estimating probability of occurrence and
impact; (iii) risk assessment - aims to rank the identified
risks and to establish priorities; (iv) action planning -
concerns planning mitigation and contingency actions for
the managed risks; and (v) risk monitoring - consists of
redoing the activities above as the project proceeds.

In GeRis’ MAS, agents were designed to support
specific activities of the risk management process. The
Risk Identifier Agent (RiskIdAg) acts during risk
identification. It suggests which risks should be identified
for the project, based on similar past projects. The Risk
Assessor Agent (RiskAssessorAg) acts during risk analysis
and evaluation. It supports the assessment of risks impact
and probability, and also supports the definition of which
risks should be managed in the project. In both cases, this
agent uses information of similar past projects. At last, the
Action Adviser Agent (ActionAdviserAg) acts in action
planning. It suggests contingency and mitigation actions
to be taken to treat risks, also based on similar past
projects. All these agents (RiskIdAg, RiskAssessorAg and
ActionAdviserAg) are Information Agents.

Since we have a MAS acting in risk management, we
need a coordinator agent to coordinate their actions. This
is the role of the Risk Manager Agent (RiskManagerAg),
which is a CoordinatorAg. It is considered the main agent
of the risk management tool and the only one in this tool
that is known by the PersonalAssistantAg. When GeRis is
initiated, the PersonalAssistantAg starts this agent. It is, in
turn, responsible for starting the other risk management
agents based on the activity of the risk management
process that the user is performing. To do that, it has to
monitor GeRis’ UI, and then, it also realizes the
UserAgInterface. Moreover, since all the other agents
need information about similar past project, the
RiskManagerAg interacts with the SimilarProjectIdAg,
capturing the past projects that are similar to the current
being performed.

The agent-based knowledge delivery approach applied
in these two tools reflects the general approach defined to
implement knowledge delivery in ODE. Every tool in
which we want to implement knowledge delivery
facilities needs to have an agent or a MAS associated to it.
If the activity being supported by the tool is complex, a
MAS is preferred. In this case, we always need to have a
coordinator agent as the tool’s main agent, and the
Personal Assistant Agent has only to know it.

Finally, we should highlight that this approach is
strongly supported by AgeODE. Each agent class is
implemented as one of the agent types defined in it, and
sometimes realizes another agent type interface.

6. Related Work

There are several works in the literature describing the
use of agents for knowledge management (KM) (see
[14]), and some approaches for integrating KM and
PSEE, some of them exploring knowledge delivery.
However, we did not find an approach exploring the

SimilarProjectIdAg

HRAllocationAg

PersonalAssistantAg

ODERouterAg

RiskManagerAg

RiskIdAg

RiskAssessorAg

ActionAdviserAg

Risk Management Tool - Geris

HumanResource Allocation Tool

synergy between agents, KM and PSEE. Let’s examine
some work done in integrating KM and PSEE.

Santos et al. [15] explores the concept of Enterprise-
Oriented SEE (EOSEE), matching KM with PSEE. As
ODE, EOSEEs are based on ontologies. But Santos et al.
say nothing about knowledge delivery.

Holz [4] attacks the problem of delivering knowledge
in software organizations by means of an approach that
represents recurrent information needs associated with
appropriate software process assets, and retrieves the
information in a two-phase, interactive retrieval model.
This approach was implemented in a system called
PRIME, which was coupled with the MILOS PSEE. As in
ODE, PRIME provides developers with relevant
information. The main difference is that in PRIME, a list
of pre-defined information needs is presented, and, from
this list, developers can choose one, and trigger an
automatic retrieval of information. In ODE, agents try to
capture this information needs and notify the user that
they have some useful knowledge items or suggestions.
As in PRIME, ODE’s users are free to inspect or not the
items suggested.

7. Conclusions

For the successful enactment of software processes, it is
essential that developers are provided just-in-time with
knowledge items that are relevant and useful for their
current tasks [4]. Thus, knowledge delivery is becoming
more and more important. In this paper, we presented an
agent-based approach used to integrate knowledge
delivery facilities into ODE, a Process-centered SEE. This
approach consists of developing specific agents to deal
with the information needs of activities of the software
process. Also an infrastructure for building agents
embedded in the environment, called AgeODE, was
developed in order to deal with agent integration in ODE.

Although ODE is being used in a software house, we
do not perform a deep evaluation of the appropriateness
of the support being provided by the agents yet. The
initial results regarding the use of the tools with
knowledge delivery support are promising. But we expect
that, based on the users’ feedback, we can refine the
agents’ behavior in order to better support those activities.

Acknowledgments

This work was accomplished with the support of CNPq,
an entity of the Brazilian Government reverted to
scientific and technological development.

References

[1] O’Leary, D.E., “Enterprise Knowledge Management”, IEEE
Computer, 54-61, March 1998.

[2] A.C.C. Natali, R.A. Falbo, “Knowledge Management in
Software Engineering Environments”, In: Proceedings of
the XVI Brazilian Symposium on Software Engineering -
SBES'2002, 238-253, Gramado, Brazil, October 2002.

[3] S. Henninger, “Using Software Process to Support Learning
Software Organizations”, in Proceedings of the Workshop
on Learning Software Organizations – LSO’1999, 99-114,
Kaiserslautern, Germany, June 1999.

[4] H. Holz, Process-Based Knowledge Management Support
for Software Engineering, Doctoral Dissertation, University
of Kaiserslautern, dissertation.de Online-Press, 2003.

[5] R.A. Falbo, D.O. Arantes, A.C.C. Natali, “Integrating
Knowledge Management and Groupware in a Software
Development Environment”, in Proc. of the 5th
International Conference on Practical Aspects of
Knowledge Management, 94-105, Vienna, Austria, 2004.

[6] I. Rus, M. Lindvall, “Knowledge Management in Software
Engineering”, IEEE Software, 26-38, May/June 2002.

[7] S. Arbaoui, J.C. Derniame, F. Oquendo, H. Verjus, “A
Comparative Review of Process-Centered Software
Engineering Environments”, Annals of Software
Engineering 14, 311-340, 2002.

[8] G. Fischer, J Ostwald, “Knowledge Management: Problems,
Promises, Realities, and Challenges”, IEEE Intelligent
Systems, 60-72, January/February 2001.

[9] A. Abecker, et alli, “Towards a Technology for
Organizational Memories”, IEEE Intelligent Systems, 40-
48, May/June 1998.

[10] R.A. Falbo, A.C.C. Natali, P.G. Mian, G. Bertollo, F.B.
Ruy, “ODE: Ontology-based software Development
Environment”, in Proc. IX Argentine Congress on
Computer Science, 1124-1135, La Plata, Argentina, 2003.

[11] R.A. Falbo, F.B. Ruy, G. Bertollo, D.F. Togneri, “Learning
How to Manage Risks Using Organizational Knowledge”,
Advances in Learning Software Organizations, Melnik G.
and Holz, H. (Eds.): LNCS 3096, 7-18, 2004.

[12] H. Jeon, C. Petrie, M.R. Cutkosky, “JATLite: A Java Agent
Infrastructure with Message Routing”. IEEE Internet
Computing, March /April 2000.

[13] T. Finin, Y. Labrou, J. Mayfield, “KQML as an agent
communication language”, Proceedings of the 3rd
International Conference on Information and Knowledge
Management (CIKM94), ACM Press, December 1994.

[14] V. Dignum, “An Overview of Agents in Knowledge
Management”, Institute of Information and Computing
Sciences, Utrecht University, technical report UU-CS-
2004-017, 2004.

[15] G. Santos, K. Villela, L. Schnaider, A.R. Rocha, G.H.
Travassos, “Building Ontology-based Tools for a Software
Development Environment”, Advances in Learning
Software Organizations, Melnik G. and Holz, H. (Eds.):
LNCS 3096, 19-30, 2004.

View publication statsView publication stats

https://www.researchgate.net/publication/221389545

