
A Model-Driven Approach to Situations:
Situation Modeling and Rule-Based Situation Detection

Patrícia Dockhorn Costa, Izon Thomas Mielke, Isaac Pereira, João Paulo A. Almeida
Computer Science Department, Federal University of Espírito Santo (UFES)

Av. Fernando Ferrari, s/n, Vitória, ES, Brazil
pdcosta@inf.ufes.br, izontm@gmail.com, pereira.zc@gmail.com, jpalmeida@ieee.org

Abstract— This paper presents a model-driven approach to the
specification of situations and situation detection. We offer two
main contributions: (i) a Situation Modeling Language (SML),
which is a graphical language for situation modeling, and
(ii) an approach to situation detection based on the
transformation of a SML model into a set of rules to be
executed on a rule-based platform. We exemplify our situation-
based development approach with an application scenario in
the domain of (mobile) banking, in which situations for
detecting fraud-susceptible behavior are defined in SML.
Based on the SML models, we discuss the rules that can be
deployed on Drools for situation detection. The approach
supports situation types defined in terms of patterns of facts, as
well as complex situations in terms of reusable situation types,
both at the specification level and realization level.

Keywords: situation specification; situation detection; rule-
based implementation

I. INTRODUCTION
The ability of a system to perceive and react to situations

of interest can be broadly referred to as situation awareness.
Situation awareness requires the ability to perceive facts and
to identify in these the patterns that characterize situations of
interest. Situation awareness has received increasing
attention in the latest years, e.g., in the areas of human-
computer interaction [10], in which systems are designed to
facilitate human situation awareness; in context-aware
ubiquitous systems [5], [6], in which situations characterize
the user’s context to promote application adaptation; in
autonomic computing, in which a system’s “self-situation”
[9] is monitored to support the planning of “self-managing”
actions; and in context-aware business process modeling
[22], in which the “combination of all situational
circumstances that impact process design and execution can
be termed the context (aka situation) in which a business
process is embedded.” [21].

As discussed by Kokar et al. in [15], “to make use of
situation awareness […] one must be able to recognize
situations, […] associate various properties with particular
situations, and communicate descriptions of situations to
others.” The notion of situation enables designers,
maintainers and users to abstract from the lower-level
entities and properties that stand in a particular situation and
to focus on the higher-level patterns that emerge from lower-
level entities in time.

We argue that enterprise systems can profit from the
notion of situation and its adequate support both at design-
time and at run-time. At design-time, behavior and policies

can be defined in terms of the types of situations in which
they apply, instead of various low-level conditions. This not
only fosters separation of concerns through abstraction but
also enables the definition of complex situation types by
reusing previously defined situation types. At run-time,
sophisticated situation detection machinery can be employed,
enabling timely reaction to current situations.

In order to leverage the benefits of the notion of situation,
proper support is required at the modeling level and at the
realization level. We address this with a model-driven
approach to the specification of situations and realization of
situation detection. We offer two main contributions: (i) a
Situation Modeling Language (SML), which is a graphical
language for situation modeling, allowing the expression of
primitive situations and complex situations involving the
composition of situations (with temporal constraints when
required), and (ii) an approach to situation detection based on
the transformation of a SML model into a set of rules to be
executed on a rule-based platform.

We exemplify our situation-based development approach
with an application scenario in the domain of (mobile)
banking, in which situations for detecting fraud-susceptible
behavior are defined in SML. Based on the SML models, we
discuss the rules that can be deployed on Drools for situation
detection.

The paper is further structured as follows: Section II
briefly characterizes situations and sets requirements for our
approach; Section III presents a scenario which is used to
exemplify the application of the approach; Section IV
introduces the Situation Modeling Language (SML); Section
V presents a formal semantics for SML; Section VI discusses
rule-based situation detection; Section VII discusses related
work and, finally, Section VIII presents concluding remarks
and indicates points for future investigation.

II. SITUATIONS
Situations are composite entities whose constituents are

other entities, their properties and the relations in which they
are involved [6]. Situations support us in conceptualizing
certain “parts of reality that can be comprehended as a
whole” [19]. Examples of situations include “John is
working”, “John has fever”, “John is working and has fever”,
“John and Paul are outdoors, at a distance of less than 10m
from each other”, “Bank account number 87346-0 is
overdrawn while a suspicious transaction is ongoing”, etc.
(Technically, the sentences we use to exemplify situations
are utterances of propositions which hold in the situations we
consider; however, we avoid this distinction in the text for
the sake of brevity.)

Situations are often reified (such as
ascribed an “object” status [15], which enab
to identify situations in facts but also
properties of situations themselves. For ex
refer to the duration of a particular situati
situation is current or past, which would ena
the situation “John has fever” occurred yest
two hours. The temporal aspect of situation
to refer to change in time, thus we could
temperature is rising” or that “Account num
been overdrawn for the last 15 days”.

A situation type [15] (or what is called
in [18], [19]) enables us to consider general
situations of a particular kind, capturing the
and identity of situations of that kind.
situation type is “Patient has fever”. This
instantiated in the cases in which instances o
as “John”, “Paul”, etc.) can be said to “ha
“John has fever” and “Paul has fever” a
instances of “Patient has fever”. These exa
need to refer to entity types such as “Patien
description of a situation type. The same can
fever” which, in this case, is defined in term
entities which instantiate the entity type “P
“body temperature”). Detecting situations (i
of a situation type) require detecting instan
types involved in the situation whose p
constraints captured in the situation type.

These characteristics of situations l
following basic requirements for our
approach:

1. Situation types should be defined at
situations instantiating these types sh
at runtime;

2. Situation types should be defined w
entity types as well as constrai
properties and relations;

3. Temporal properties of situatio
considered (such as initial time,
situation, final time and duration).

In addition to these requirements, we ha
that the definition of complex situation typ
manageable by defining these types
composition of simpler situation types. Thus
the recursive composition of situation types

III. APPLICATION SCENAR

We consider a banking application scen
user can access his/her account via mobile d
computers and ATMs. We intend to detect
behavior, such as the ones generated from
and bankcard cloning.

Typically, fraud-susceptible behavior d
tracking of the user’s profile, which is con
with incoming transactions, looking for u
patterns. Some examples of well-establis
detect suspicious behavior are: (i) unusual c
on unlikely product groups; (ii) large transf
unrelated accounts; (iii) the amount of wit

in [3], [6]), or
bles one not only
to refer to the

xample, we could
ion or whether a
able us to say that
terday and lasted

ns also enables us
say that “John’s

mber 87346-0 has

situoid universal
characteristics of

e criteria of unity
An example of
type is multiply

of “Patient” (such
ave fever”. Thus
are examples of

amples reveal the
nt” as part of the
n be said for “has

ms of a property of
Patient” (namely
i.e., instantiations
nces of the entity
properties satisfy

lead us to the
situation-based

design time, and
hould be detected

with reference to
nts on entities’

ons should be
and, for a past

ave also observed
pes may be more
in terms of a
s, we also include
in our approach.

RIO
nario in which the
devices, personal
fraud-susceptible

m password theft

detection lies on
nsidered together
unusual situation
shed patterns to
credit-card debits
fer transactions to
thdrawals over a

day is N-times larger than th
withdrawals over a month, etc. In o
context information (e.g. time an
detect behavior patterns that ca
suspicious. An example of a suspic
account is accessed from two diffe
kilometers apart from each other),
time (e.g., 10 minutes). When
appropriate action can be perf
notification of the account owner an
in this account.

Before we proceed to discuss
should first characterize the basic e
discourse of our scenario. For that
context conceptual model [6] w
vocabulary to be used in the s
situations (see Figure 1). We use
diagram incorporating in UML
proposed in [7]. The stereotype «E
entities which are considered to exi
entities. The entity types consider
Device and Account. The stereoty
used to model a property of an enti
dependent on a single entity). The
an example of intrinsic context that
SpatialEntity (Device). The stereot
is used to model relations which
entities (and depend existentially on
relational context Access relates
capturing the relationship establish
being accessed through a Device
OngoingWithdrawal captures the
when the user of an ATM requests
Account until the end of the tra
dispensed or the transaction is cance

Figure 1 Context model for the

The most basic situation type w
in which an account is being acces
we are interested in the situations
withdrawal is ongoing; a suspicious
a withdrawal of value gr
(OngoingSuspiciousWithdrawal). W
two situation types that involve tem
instances of LoggedIn:
SuspiciousFarAway-Login and Ac
We will address the specification
Section IV.

he average amount of
our scenario, we consider
d location), in order to
an be characterized as
ious situation is when an
erent locations (e.g., 300
within a short period of

this situation occurs,
formed, such as, e.g.,
nd auditing of transactions

situation modeling, we
lements in the domain of
t, we employ a so-called

which defines the basic
subsequent definition of
e a profiled UML class

the basic distinctions
Entity» is used to model
ist independently of other
red in this scenario are

ype «IntrinsicContext» is
ity (which is existentially
context type Location is

t is used to characterize a
type «RelationalContext»
are established between

n the entities related). The
s Device and Account,
hed when an Account is
. The relational context
relationship that exists

a withdrawal of a certain
ansaction (when cash is
elled).

e banking scenario

we are interested in is that
ssed (LoggedIn). Further,
s in which a suspicious
s withdrawal is defined as
eater than $1000,00

We are also interested in
mporal relations between
SuspiciousParallelLogin,

ccountUnderObservation.
n of these situations in

IV. THE SITUATION MODELING LANGUA

In this section we discuss the conce
proposed modeling language by means of
of situation types previously mentioned.

Figure 2 depicts the definition of the Lo
type, graphically represented as a rounded
elements composing a particular situation a
the bordered rectangle that represents that
case they are the entity types Device and A
relational context type Access. Entity types
as rectangles and Relational context type
Relational Context types and Entity types ar
directed arrow, which has a role name consi
specified in the context model, as depict
Finally, the small diamonds at the bord
entities of this situation which may be refe
composite situations.

Figure 2. Situation LoggedIn

Figure 3 defines the OngoingSuspi
situation type, which captures the situation i
performs a suspicious withdrawal from a
entities participating in this situation typ
Account, which are connected by a relatio
OngoingWithdrawal. A suspicious withdraw
constraining the value attribute of the Ong
relational context to be greater than $10
a literal.

Figure 3. Situation OngoingSuspiciousWi

Attribute types, such as Monetary, are
white oval shapes, while literals are represe
oval shapes. The greater than directed arr
Monetary value attribute type and the literal
of the built-in greater than relation, wh
relation, in the sense defined in [12]. Form

AGE (SML)

epts used in our
the SML models

oggedIn situation
d rectangle. The
are shown inside
situation. In this
Account, and the
s are represented
es as diamonds.
re connected by a
istent with names
ted in Figure 1.

der represent the
erred to by more

iciousWithdrawal
n which an ATM
an account. The

pe are ATM and
onal context type
wal is defined by
goingWithdrawal

000,00, which is

ithdrawal

represented with
ented with orange
row between the
l is an application
hich is a formal
mal relations hold

directly between any elements of
intervening element). Domain-speci
be introduced in a context model and

Figure 4 shows an example of a
of another situation type. The oc
situation types are represented withi
as nested rounded rectang
SuspiciousParallelLogin situation t
two occurrences of situation Logge
for the same account.

The directed arrow equals co
diamonds constrains the occurrenc
such that they must include the p
account (regardless of the device us
These bordering diamonds repr
participate in the situation which
composite situation being defined.

The other directed arrow labeled
constraint referring to a temporal for
situation occurrences, in such wa
must overlap in time. SML allows c
using the temporal formal relation
namely before, meets, overlaps,
coincides, and their converse re
overlapped by, started by, includes,

Figure 4. Situation Suspiciou

Figure 5 depicts an example tim
SuspiciousParallelLogin, in terms
situation LoggedIn (for the same
situation only exists when b
simultaneously.

Figure 5. Example timeline for Situatio

Figure 6 depicts a more comp
Situation SuspiciousFarawayLogin
additional constraints. The S
situation type is defined by two Lo
the same account), in which the fir

f the model (without an
ific formal relations may
d referred to in SML.

a situation type composed
ccurrences of composing
in the composite situation
les in gray. The
ype is defined here with

edIn that overlap in time,

onnecting the bordering
es of situation LoggedIn

participation of the same
ed to access the account).
esent the entities that

h are of interest to the

d with overlaps defines a
rmal relation between the
y that both occurrences
composition of situations
ns defined by Allen [1],
starts, during, finishes,

elations (after, met by,
and finished by).

usParallelLogin

meline for an instance of
of two occurrences of
account). Note that the

both occurrences exist

on SuspiciousParallelLogin

lex situation type called
n, in which we define
SuspiciousFarawayLogin
oggedIn occurrences (for
rst occurrence must have

João Paulo Almeida

João Paulo Almeida

João Paulo Almeida

João Paulo Almeida

ceased at most 2 hours earlier than the secon
formal relation is specified by the directe
which is parameterized with lower and u
(between 0 and 2 h). Past situations, s
occurrence of Situation LoggedIn,
represented by nested rounded rectangles in

The situation type SuspiciousFara
prescribes that the Locations of the entities
which are participating in the nested situati
not be near each other, at the time the resp
begin to occur. The properties of entities ar
oval shapes. In this example, the param
relation not near is employed to constrain th
such that they must be at least 500 km apart

Figure 6. Situation SuspiciousFaraway

Figure 7 depicts an example timeline fo
SuspiciousFarawayLogin, in terms of tw
occurrences of situation LoggedIn, for th
Note that the situation begins to exist simu
second occurrence of situation LoggedIn, w
one hour after the first. When the secon
situation LoggedIn ceases to exist, so does t
situation SuspiciousFarawayLogin.

Figure 7. Example timeline for Situation Suspicio

SML also allows defining constrain
properties (initial and final time, duration, et
in Figure 6, we could have made explicit
initial time and final time of the first occurr
LoggedIn, instead of using the temporal
Figure 8 depicts the situation AccountUnde
which we explicitly make reference to the
situation. The situation AccountUnderObs
when an account has made any suspicious w
past 30 days. The icon for the existentia
indicates that any instance
OngoingSuspiciousWithdrawal for a given
matched here, as long as it respects the c
situation type. In this case, the withdra

nd. This temporal
ed arrow before,
upper time limits
uch as the first
are graphically
white.

awayLogin also
s of type Device,
ion types, should
pective situations

are represented as
meterized formal
he two Locations,
from each other.

yLogin

for an instance of
wo (non-parallel)
he same account.
ultaneously to the
which has started
nd occurrence of
the occurrence of

ousFarawayLogin

nts for situation
tc.). For example,

reference to the
rence of situation

relation before.
derObservation in
e final time of a
servation occurs
withdrawal in the
al quantifier (�)

of situation
n account can be
constraints in the
awal must have

occurred in the past 30 days, whic
formal relation within the past th
attribute of a situation with the liter
window stretches for more 30 d
Situation OngoingSuspiciousWidraw
account. The consequence of this
account will no longer said to
AccountUnderObservation, in
withdrawals have occurred in the pa

Figure 8. Situation AccountU

Figure 9 depicts an example time
AccountUnderObservation, in term
situation OngoingSuspiciousWithd
account. The situation begins to
occurrence of situation Ongoi
ceases to exist. The time window s
the final time of the latest (in this
of situation OngoingSuspiciousWith

Figure 9. Example timeline for Situation

V. A FORMAL SEMAN

We discuss here a formal se
purpose is to define the languag
mapping rules from the language’s
underlying logic framework.

A. Frame-based Model
We assume a Kripke-style fram

the semantics for the context and
entities, their context (at instance-le
are represented by a model with the
− A (non-empty) set W of worl

representing what exists at a part
− A (non-empty) set U of al

dependent context elements (r
instances of the classes in the con

− A (non-empty) set S of all poss
of situation types in the SML mo

− A binary relation R, represe
between worlds; accessibility re

ch is represented by the
at relates the final time
ral 30 days. The 30 days
days every time a new
wal initiates for a given
construction is that the

o be in the Situation
case no suspicious

ast 30 days.

UnderObservation

eline for an instance of
ms of two occurrences of
drawal, for the same
o exist when the first
ingSuspiciousWithdrawal
stretches for 30 days after
case second) occurrence

hdrawal.

n AccountUnderObservation

NTICS FOR SML
emantics for SML. Our
ge precisely by defining

syntactic elements to an

me-based model to define
d situation models. The
evel) and their dynamics
following elements:
lds, with each world w
ticular point in time.
l possible entities and
representing all possible
ntext model).
sible situations (instances
odel).
enting the accessibility
eflects changes from one

point in time to another: the creation and destruction of
entities and relational context, as well as the change in
value of intrinsic context. (We consider an asymmetric,
irreflexive and intransitive relation, representing the
direct accessibility between subsequent worlds.)

− A predicate existsInWorld(w, e) that holds if an entity
eӇ(Uڂ� S) exists in world wӇW.

− A function time(w) that determines a value in a time
structure for a particular world.

− Other predicates and functional symbols derived from the
context and SML models (and discussed in the sequel).
Figure 10 illustrates a possible structure of the frame-

based model in our banking example. It reveals a particular
progression of worlds with two accounts (a1 and a2), one of
which (a1) is being accessed by a device (d1) in worlds w1,
w2, and w3 (and not in w4). There is a parallel login in w2
and w3, when a1 is accessed by both device d1 (situation s1)
and device d2 (situation s2). Direct acessibility is represented
by the arrows, thus, R = { <w1,w2>, <w2, w3>, <w3, w4> }.
The transition between w1 and w2 is promoted by an
occurrence creating the “Access” relational context ac2. The
transition between w2 and w3 is the result of the destruction
of account a2. The transition between w3 and w4 is the result
of the destruction of ac1 and ac2.

Figure 10. Illustration of the frame-based model

We define a universal predicate for each entity class in
the context model, which is true of a particular entity when it
is present in world w and is an instance of that class in a
particular world. In our example, Account(w1, a1) holds,
while Account(w4, a2) is false.

We likewise define a universal predicate for each
relational context type in the context model. In our example,
Access(w1, ac1) holds, while Access(w4, ac1) does not. We
also defined a predicate for each association in the context
model. In this case, the predicate includes a world and the
related elements in its domain (each of the association ends
in the class diagram becomes a parameter of this predicate).
Thus, in our example, isAccessed(w2, a1, ac1) and
isAccessing (w2, d1, ac1) hold, while isAccessed (w4, a1,
ac1) and isAccessing (w4, d1, ac1) do not hold.

Finally, we define a function for each intrinsic context
type and attribute in the model; the domain of this function
includes a world and the entity characterized by the intrinsic
context (or attribute). The range is determined by the

datatype associated with the intrinsic context type in the
context model, thus involving potentially complex values.
For example, Location(w1, d1) maps to latitude-longitude
coordinates of a device.

B. Simple Situation Types
A simple situation type (such as e.g., LoggedIn) is

interpreted as an open sentential formula formed by a
conjunction of terms, each of which corresponds to an
element in a situation type. The formula includes a free
variable (i.e., parameter) to represent the world w in which
the situation exists, a free variable to represent the situation
itself, as well as a free variable to represent each entity and
relational context element in the situation.

Consider the LoggedIn situation type; it consists of three
participating elements: Device, Account and Access,
corresponding to d, a, and ac in the formula. Each of the
participating elements in this situation (Device, Account and
Access) contributes a term to the formula, using the universal
predicate for each type. The connections between entities
and context types in the situation type correspond to links
and are also added in this conjunction, yielding:

LoggedIn(w, s, d, a, ac) iff
(Device(w, d) ٿ Account(w, a) ٿ�Access(w, ac) ٿ
isAccessing(w, d, ac) ٿ isAccessed(w, a, ac)).1

We define that a situation of a particular type exists in a
particular world iff there is a binding in that world which
makes the formula true. The definition of the situation type is
thus complete by admitting an axiom with the universal
closure of the formula corresponding to the situation type
(i.e., prefixing the formula with a universal quantifier for
each free variable). Formally, for our LoggedIn example:

ӁwӇW, ӁsӇS, ӁdӇU, ӁaӇU, ӁacӇU,
LoggedIn(w, s, d, a, ac) iff
(Device(w, d) ٿ Account(w, a) ٿ�Access(w, ac) ٿ
isAccessing(w, d, ac) ٿ�isAccessed(w, a, ac)).

For each situation type, we must also admit an axiom to
guarantee that the situation is unique for a particular binding
in a particular world. Formally, in our example:

ӁwӇW, ӁsӇS, Ӂs’ӇS, ӁdӇU, ӁaӇU, ӁacӇU,
((LoggedIn(w, s, d, a, ac) ٿ
 LoggedIn(w, s’, d, a, ac)) ĺ s=s’).

Further, if the binding remains stable in subsequent
worlds, the situation is also the same. Thus, we also admit
the following axiom:

ӁwӇW, Ӂw’ӇW, ӁsӇS, Ӂs’ӇS, ӁdӇU, ӁaӇU, ӁacӇU
((w R w’) ٿ LoggedIn(w, s, d, a, ac) ٿ
 LoggedIn(w’, s’, d, a, ac)) ĺ s=s’).

(In our example, this means that the identity of s1 is
preserved across w1, w2 and w3; while the identity of s2 is
preserved across w2 and w3.)

Constraints on the values of intrinsic context types are
also included in the open formula corresponding to the

1 Note here that we omit from this formula the following terms which are
superfluous as all elements in this situation are elements of different types:
d�a, d�ac, ac�a; However, these would be required for the case in which
two elements of the same type appear as participants in a situation type.

situation type. Each built-in formal relation (such as greater
than, not near, equals) is interpreted as a predicate involving
potentially complex values. In our example, the
OngoingSuspiciousWithdrawal situation type leads to the
following formula (where greaterThan(x, y) is defined as
x>y):

OngoingSuspiciousWithdrawal(w, s, a, atm, ow) iff
(Account(w, a) ٿ�ATM(w, atm)ٿ� OngoingWithdrawal(w, ow) ٿ
hasWithdrawal(w, ow, a) ٿ�doWithdrawal (w, ow, atm) ٿ
(greaterThan(OngoingWithdrawalValue(w, ow), 1000)).

As discussed for the case of the LoggedIn situation type,
we should admit as an axiom the universal closure of the
formula above, as well as axioms for uniqueness and
presentation of situation identity (similar to those defined for
LoggedIn). We omit them here for the sake of brevity, and
focus on the construction of the open formula corresponding
to each situation type in SML.

C. Complex Situation Types
A complex situation type, i.e., a situation type composed

of other situation types, can also be interpreted as an open
sentential formula. The formula corresponding to a complex
situation type is derived using the same rules discussed for
simple situation types with the addition of terms for each
composing situation, each of which add a free variable to
represent the composing situation.

In our example, the SuspiciousParallelLogin situation
type leads to the following formula:

SuspiciousParallelLogin(w, s, s, s’) iff
(LoggedIn(w, s, d, a, ac) ٿ
LoggedIn(w, s’, d’, a’, ac’) ٿ (s�s’) ٿ
overlaps(s, s’) ٿ (a=a’)).

The overlaps predicate holds whenever s and s’ exist
simultaneously and s begins before situation s’. Formally:

Ӂs,s’ӇS overlaps(s, s’) iff
ӃwӇW (existInWorld(w,s) ٿ� existInWorld(w,s’)) ٿ
 (initialTime(s)<initialTime(s’)).

The initial time of a situation is defined formally by:
ӁsӇS, ӁwӇW ((initialTime(s)= time(w)) iff (w=firstWorld(s)) iff
existsInWorld(w, s) ٿ�¬Ӄw’ӇW ((w’ R w) ٿ existsInWorld(w’, s))

While each term that corresponds to a current situation
uses the variable w to refer to the current world (cf. example
SuspiciousParallelLogin above), each term that corresponds
to a past situation contributes an additional free variable to
represent the past situation and world. This is evident in the
SuspiciousFarwayLogin example, which leads to the
following formula:

SuspiciousFarawayLogin (w, s, s’, s’’) iff
(LoggedIn(w, s’, d, a, ac) ٿ
LoggedIn(wpast, s’’, d’, a’, ac’) ٿ
(s’�s’’) ٿ� (w�wpast) ٿ before(s’, s’’, 2) ٿ (a=a’) ٿ�notnear(
Location(firstWorld(s’),d), Location(firstWorld(s’’),d’), 500km)).

Here, before(s1, s2, t) is a built-in temporal predicate.
Figure 11 shows all supported temporal predicates. Time is
represented in the horizontal axis and situations in black
represent inactive situations (those that have ended). The

formal definitions rely on comparisons of the initial time
(shown above) and the converse final time of situations.

Figure 11. Supported temporal relations between situations

VI. SITUATION DETECTION REALIZATION
Once the required situation types have been specified in

SML, we proceed by deriving an implementation for
situation detection and handling using as a starting point the
SML models. As implementation platform we have chosen
the Drools general-purpose rule-based engine due to its
performance, availability and community support. Context
information is fed as facts into the working memory of the
Drools rule engine and rules generated in the transformation
of SML models are executed to detect situations.

Since there is no direct support for situations in Drools,
we have opted to add functionality on top of the platform to
provide such support. This enables us to reflect the overall
structure of the SML specification with a simple rule pattern
at the implementation level, which is beneficial with respect
to traceability and simplicity of the transformation of SML
models. We call the additional support for situations in
Drools Drools Situation. Drools Situation builds on Drools
Fusion, which is a Drools module responsible for complex
event processing capabilities. No modification of the
general-purpose Drools engine is required, and the support
for situations is added through general rule patterns for
situations and situation-independent helper classes.

Figure 12 depicts the elements of our approach, relating
specification level and realization level as well as design
time and run-time aspects.

The upper part of the figure shows the design time
correspondences between elements of the specification level
and the realization level. A UML context model is
transformed into Java classes in an Acceleo
(http://www.acceleo.org/) transformation presented in [4].
The transformation of SML models leads to Java classes and
a situation detection rule set which rely on Drools Situations.
We focus here on the design of this transformation (in
section VI.A); the implementation of this transformation in
Acceleo is presented in [4], along with the EMF metamodels
for context and situation models.

The lower part of the figure reveals the r
between the sources of context informatio
based implementation. Context sources
information, which is input as facts in the e
memory. These facts are Java objects insta
Java classes that have been generated fr
model. The rule engine uses the generated si
rule set to detect situation instances from
working memory. The mechanism used for
in Drools (and in our case for situation detec
the Rete algorithm (introduced in [11]), wh
patterns for situations by remembering past
tests. Only new or modified facts are tested
which garantees the efficiency of pattern ma

A. Generation of a Situation Rule
Each situation type corresponds to the

single rule in Drools Situation, which we ca
Conditions for firing a situation rule, i.e., the
(LHS) of a situation rule, are derived from t
elements and constraints. The Right-Hand-
situation rule invokes helper functiona
Situation in order to initiate the situ
management.

Figure 13 shows the situation rule gen
SML model for Situation LoggedIn (Figure 2
rule "LoggedInRule"
when
 account : Account()
 device : Device()
 $access1 : Access(isAccessed ==
 isAcessing ==
then
 SituationHelper.situationDet
LoggedInSituation.class); end

Figure 13. LoggedIn situation rul

Figure 12 Overvi

run-time relations
on and the rule-
provide context

engine’s working
antiated from the
from the context
ituation detection
the facts in the

r rule application
ction) is based on
hich matches the
pattern matching
against the rules,

atching.

e definition of a
all situation rule.
e Left-Hand-Side
the situation type
-Side (RHS) of a
ality of Drools
uation life-cycle

nerated from the
2).

= account,
= device)

tected(drools,

le.

The generated LHS of the rule i
patterns (lines of the “when” clause
the entities, relational contexts an
participate in that situation. Patt
constraints representing requirement
values and relations. The situation ru
for example, includes three patterns
entity types Account and Device, a
type Access. The pattern correspo
context Access is constrained in su
the participating device and accou
between the relational context and th

The use of operators in SML ge
Drools rule. These constraints alw
parameterized or not, and a referen
to, that can be a literal or a bindin
pattern. Figure 14, for example, d
OngoingSuspiciousWithdrawal situ
which the last rule pattern narrows
the relational context OngoingWithd
greater than $1000,00.
rule "OngoingSuspiciousWithdr
when
 $account1 : Account()
 $atm1 : ATM()
 $ongoingwithdrawal1 : Ongo
 value > new M
 hasWithdrawal
 doWithdrawal
then
 SituationHelper.situationD
OngoingSuspiciousWithdrawalSi

Figure 14. OngoingSuspiciousWith

The Right-Hand-Side (RHS) of
the situationDetected method, which
we call a situation class and s

ew of the model-driven and rule-based approach to situations

s a conjunction of Drools
e) which are derived from
nd nested situations that
terns in a rule contain
ts on the entities’ context
ule depicted in Figure 13,
s in its LHS, representing
and the relational context
onding to the relational

uch way that it applies to
unt (reflecting the links
he entities).
enerates constraints in the

ways include an operator,
nce value to be compared
ng variable from another
depicts the code for the
ation type (Figure 3), in
down to the instances of

drawal, whose values are

rawalRule"

oingWithdrawal(
Monetary("$1000"),
l == $account1,
== $atm1)

Detected(drools,
ituation.class); end

hdrawal situation rule.

the situation rule invokes
h in turn instantiates what
starts situation lifecycle

management. Each situation class corresponds to a situation
type in SML. Situation classes are used as situation fact
templates, and are simple classes, with an attribute for each
entity that plays a role in the situation.

A referred nested situation in SML is also mapped to a
Drools pattern, as depicted in Figure 15, which specifies a
situation rule for the Situation SuspiciousParallelLogin
(Figure 4) in terms of two occurrences of the Situation
LoggedIn. The pattern refers to the situation class of the
nested situations. Similarly to other relations, temporal
relations are also mapped to constraints. Figure 15 illustrates
this for the “overlaps” temporal relation.

For each nested situation, such as the LoggedIn
situations, we should specify whether they are current
(active) or past (deactivated). For that, we include the exists
operator, which checks whether a CurrentSituation fact
exists for that situation. Similarly, for past situations, a not
exists condition for the CurrentSituation fact should be
defined for that situation. In Section B we further discuss
how CurrentSituation facts are managed in the working
memory (inserted and retracted).
rule "SuspiciousParallelLoginRule"
when
 $loggedin1 : LoggedInSituation(
 $loggedin1_account:account)
 exists(CurrentSituation (
 situation == $loggedin1))
 $loggedin2 : LoggedInSituation(
 this overlaps $loggedin1,
 account == $loggedin1_account)
 exists(CurrentSituation (
 situation == $loggedin2))
then
 SituationHelper.situationDetected(drools,
SuspiciousParallelLoginSituation.class); end

Figure 15. SuspiciousParallelLogin situation rule.

Drools Situation offers operators for temporal reasoning
between situations, analogously to Drools Fusion, which
supports temporal operators based on Allen’s interval
algebra operations [1]. However, Drools Fusion exclusively
supports temporal relations between events, which must have
predefined final times (not the case for situations).

In order to overcome this shortcoming and still use the
temporal operators offered by Drools Fusion, we have
overridden current operators in such a way that, when
applied to situations, they are inferred by considering the
application of operators to the events of situation activation
and deactivation. The new operators’ implementation is
rather similar to the original implementation, but goes a step
further, by extracting the event of interest from the situation
parameter to, finally, evaluate the operators in these events
as currently performed in Drools Fusion.

Figure 16 depicts the implementation code for the
Situation AccountUnderObservation (defined in Figure 8).
In order to restrict to past instances of the Situation
OngoingSuspiciousWithdrawal, the not exists operator for
the CurrentSituation fact is used, as previously discussed.

The existential operator (�) also generates an exists
condition, which is met when a DeactivationSituationEvent
for any OngoingSuspiciousWithdrawal situation has been

inserted in the working memory within the past 30 days. The
Drools operator over window is used to define a sliding
window interval, for which we assign the 30 days value. This
sliding window is automatically stretched by Drools when
new instances of the DeactivationSituationEvent for that
situation are created.
rule "AccountUnderObservationRule"
when
 account : Account()
 $ongoingsuspiciouswithdrawal1 :
 OngoingSuspiciousWithdrawalSituation(
 account == account)
 not(exists(CurrentSituation (situation ==
 $ongoingsuspiciouswithdrawal1)))
 exists(DeactivateSituationEvent(
 situation == $ongoingsuspiciouswithdrawal1)
 over window:time(30d))
then
 SituationHelper.situationDetected(drools,
AccountUnderObservationSituation.class); end

Figure 16. AccountUnderObservation situation rule.

Table 1 shows a summary of the mappings between SML
constructs and Drools Situation constructs.

Table 1. Mappings between SML constructs and Drools Constructs

SML Constructs Drools Constructs
Situation Type Drools rule (and a Java Class

representing the Situation Fact
Template)

Entity types, Relational Context
types, and nested Situations types

Rule patterns

Intrinsic Context types Pattern constraints
Relations (formal, temporal and
material)

Pattern restrictions (with
operators)

B. Situation Management: Under the Hood
A situation fact life cycle consists of its creation, activation,
deactivation and destruction. The activation of a situation
fact occurs simultaneously to its creation, and the
deactivation occurs when the situation rule’s condition no
longer holds. When the condition at the LHS holds, a
situation instance is created; when the condition no longer
holds, the situation instance is deactivated. Deactivated
situation instances consist of historical records of situation
occurrence, which may be used to detect situations that refer
to past occurrences. Currently, we implement a simple rule-
based time-to-live mechanism for historical records, which
considers the final time of deactivated situation instances.

The situation’s lifecycle management strategy strongly
relies on a Drools feature called Truth Maintenance System
(TMS). The TMS automatically ensures the logical integrity
of facts handled by the rule engine. A logical fact exists in
the working memory while the conditions of the rule that has
inserted it remain true. Thus, the solution we have used
consists on a logically inserted fact produced by a situation
rule to reflect the situation instance state (existence or
nonexistence). This solution has enabled us to detect the
activation and deactivation of a situation instance by means
of a single rule specification.

The situation logical fact, which we call
CurrentSituation, is created by the SituationHelper class
when the conditions of a situation rule are met. Internally, we
use a deactivation rule (Figure 17) to manage the
deactivation of a situation. The LHS of the deactivation rule
checks when the CurrentSituation logical fact for a situation
instance is absent (which means the condition of that
respective situation rule has turned false and the TMS has
automatically removed the CurrentSituation logical fact for
that situation instance). The RHS updates the related
SituationType instance state to non-active (a past situation).
rule "SituationDeactivation"
when
 $sit: SituationType(active == true)
 not (exists CurrentSituation(situation == $sit)
then
 SituationHelper.deactivateSituation(drools,
 (Object) $sit);
end

Figure 17. Situation Deactivation rule

VII. RELATED WORK
There are several approaches to situation specification,

which have been classified into learning-based or
specification-based and reviewed in [25]. In learning-based
approaches, situations are identified by using AI learning
methods, such as Bayesian Networks and Decision Trees. In
specification-based approaches such as the one proposed
here, situation types are explicitly defined by capturing
expert knowledge in situation specifications.

 Many of the specification-based approaches to situation
such as, e.g., [24], [15], [8], [5], [13], often specify situations
in terms of logical expressions or formal ontologies. Most of
these situation modeling approaches are platform-specific or
make use of general-purpose languages, such as OWL and
OCL. This means that they are not designed to specifically
model situation types and, therefore, do not offer primitive
situation constructs. In addition, many of these languages
still lack expressiveness with respect to situation
composition and temporal reasoning.

As discussed in [5] several approaches presented in the
literature [17], [14], [23] support the concept of situation as a
means of defining particular application’s states of affairs.
Nevertheless, these approaches usually offer reactive query
interfaces instead of detecting situations attentively. The
work presented in [14] discusses a situation-based theory for
context-awareness that allows situations to be defined in
terms of basic fact types. Fact types are defined in an ORM
(Object-Role Modeling) context model, and situation types
are defined using a variant of predicate logic. The realization
supported by means of a mapping to relational databases,
and a set of programming models based on the Java
language. Although the design supports event triggers for
situation detection, to the best of our knowledge and as
reported in [14], this programming model has not been
implemented.

An approach that also applies Allen relations to situations
is presented in Reigner et al [20]. The authors model what

they call a situation network, relating situations through the
various Allen relations. They rely on events to progress from
situation to situation, and differently from our approach, do
not elaborate on the patterns or conditions (constraints on
properties, relations and existence of entities) that define a
situation type. We could say that a situation type is “opaque”
in their approach, which focus on the relations between
situations.

In our previous work, some of us have explored the use
of general-purpose UML class diagrams with OCL
constraints to define the conditions under which situations of
a certain type exist [5]. An invariant in that approach is
interpreted as the necessary and sufficient condition for a
situation to exist. Situations modeled in SML can also be
modelled with the technique discussed in that paper,
however, the approach suffers from poor usability, as it relies
on extensive use of OCL constraints, in particular to make
sure that elements participating in a situation are related to
each other. This is unnecessary in SML as path
connectedness and nesting imply these constraints, which
would necessarily have to be stated explicitly in OCL in that
approach. This would lead to more verbose models and
would require OCL knowledge for situation modeling. The
result is that SML models are more compact and more usable
than the corresponding general-purpose models in UML and
OCL. Our previous work is also different from the work
presented here in terms of the implementation patterns, since
Jess, differently from Drools does not support the so-called
logic facts (and consequently, truth maintenance had to be
supported in the transformation itself.)

In our earlier work some of us have also addressed issues
involved in a distributed rule-based approach for situation
detection (see [5], [7]). In that work, we have explored two
distributed scenarios (beyond a centralized approach): (i)
distributed detection with multiple engines detecting
independent situations and (ii) a distribution scenario with a
higher level of distribution assigning parts of the rule
detection functionality to different rule engines. First, we
should note that the use of SML does not in principle
prevents us from adopting these distribution scenarios at the
realization level. Approach (i) should be directly feasible
with the realization patterns proposed (using Drools Server
to connect to remote engines). Nevertheless, approach (ii)
relies on further distribution support from the rules platform.
In our earlier work this was provided by a distributed
extension of Jess (DJess). Similar support is not yet available
for Drools; should this support be available in the future, we
expect to be able to address approach (ii) by writing an
additional transformation from SML.

VIII. CONCLUDING REMARKS
In this paper, we have addressed challenges in the

explicit support for situations at both situation specification
level and realization level. At the specification level, we
have enabled the modeling of situation types through a
domain-specific graphical language called SML. At the
realization level, we have detected situations with a rule-
based approach implemented on Drools. We have proposed
implementation patterns for situation rules, as well as

provided support for the implementation of complex
situations from more primitive situations both at the
specification and realization levels (thus preserving the
overall specification structure in the realization). Further, we
have implemented temporal operators for situations and the
implementation level support for situations in Drools can
also be employed independently of SML.

An evaluation of the performance of situation detection is
ongoing. Nevertheless, due to our previous experiences with
the use of a rule-based approach for situation detection
(employing Jess) [5] we expect the performance of situation
detection to be adequate for most applications. As we have
discussed earlier, the algorithms employed in pattern
matching are optimized to avoid repeating unnecessary
comparisons for conditions that have not been modified,
reducing the effort for situation detection.

We have implemented the support for graphical editing
of SML models in an Eclipse plug-in using Obeo Designer.
The SML diagrams depicted here have been obtained
through screenshots of this plug-in. The situation detection
rules that correspond to SML models produced in the tool
are fully generated using automated transformations
implemented in Acceleo, with no manual intervention
required in the Drools code (see [4]).

We intend to continue investigating on the expressive
power of SML without compromising the simplicity we have
achieved in the visual representation of patterns in situation
types. One of the potential additions is a textual syntax for
writing advanced situation constraints. We believe this can
be offered to expert users in scenarios in which the
expressiveness of the graphical language shows to be
insufficient. Finally, the concrete syntax presented here
should be subject to analysis in terms of the guidelines
defined in [16].

ACKNOWLEDGMENT
This research is funded by the Brazilian Research

Funding Agencies FAPES (grant number 52272362/2011)
and CNPq (grants number 483383/2010-4 and 310634/2011-
3). Izon Thomas Mielke is supported by FAPES.

REFERENCES
[1] J. F. Allen, “Maintaining knowledge about temporal intervals,”

Communications of the ACM, vol. 26, Nov. 1983, pp. 832–843.
[2] M. Bali, Drools JBoss Rules 5.0 Developer’s Guide, Packt

Publishing, 2009.
[3] J. Barwise, The Situation In Logic, CSLI Lecture Notes 17, 1989.
[4] P. D. Costa, T. I. Mielke, I. Pereira and J. P. A. Almeida, Realization

of a Model-Driven Approach to Situations: Situation Modeling in
Ecore and Rule-Based Situation Detection in Drools, Technical
Report, Federal University of Espírito Santo, Brazil, 2012. Available
at http://nemo.inf.ufes.br/files/sml_tech_report.pdf

[5] P. D. Costa, J. P. A. Almeida, L. F. Pires and M. J. van Sinderen,
“Situation Specification and Realization in Rule-Based Context-
Aware Applications,” Proc. 7th IFIP Intl’ Conf. Distr. Applications
and Interoperable Systems (DAIS’07), Springer, 2007, pp. 32-47.

[6] P. D. Costa, G. Guizzardi, J.P.A. Almeida, L. Ferreira Pires, M. van
Sinderen, “Situations in Conceptual Modeling of Context”. Workshop

on Vocabularies, Ontologies, and Rules for the Enterprise (VORTE
2006) at IEEE EDOC 2006, IEEE Computer Society Press, 2006.

[7] P. D. Costa, Architectural Support for Context-Aware Applications:
From Context Models to Services Platforms, Ph.D. Thesis, University
of Twente, 2007.

[8] K. Devlin, “Situation theory and situation semantics,” in Handbook of
the History of Logic, vol. 7, J. Woods and D. M. Gabbay, Elsevier,
2006, pp. 601–664.

[9] S. Dobson, R. Sterritt, M. Hinchey, Fulfilling the Vision of
Autonomic Computing, IEEE Computer, vol. 43 , no. 1, 2010, 35-41.

[10] M. R. Endsley, “Toward a Theory of Situation Awareness in
Dynamic Systems”, Human Factors: The Journal of the Human
Factors and Ergonomics Society, vol. 37 no. 1, 1995, pp. 32-64.

[11] C. Forgy, “On the efficient implementation of production systems”,
Ph.D. Thesis, Carnegie-Mellon University, 1979.

[12] G. Guizzardi, “Ontological foundations for structural conceptual
models,” Ph.D. Thesis, Centre for Telematics and Information
Technology, University of Twente, 2005.

[13] D. Heckmann, “Situation Modeling and Smart Context Retrieval with
Semantic Web Technology and Conflict Resolution”, MRC 2005,
LNAI 3946, pp. 34–47, Springer, 2006.

[14] K. Henricksen and J. Indulska, “A software engineering framework
for context-aware pervasive computing,” Proc. 2nd IEEE Conf. on
Pervasive Computing and Communications (PerCom 2004), IEEE
Press, 2004, pp. 77-86, doi: 10.1109/PERCOM.2004.1276847.

[15] M. M. Kokar, C. J. Matheus and K. Baclawski, “Ontology-based
situation awareness,” Information Fusion, vol. 10, Jan, 2009, pp. 83-
98, doi: 10.1016/j.inffus.2007.01.004.

[16] D. Moody, “The ‘Physics’ of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering”. IEEE Trans.
Softw. Eng. 35, 6, 2009, pp. 756-779. doi:10.1109/TSE.2009.67

[17] X. Hang Wang, D. Qing Zhang, T. Gu, H. Keng Pung, Ontology-
Based Context Modeling and Reasoning Using OWL. Proc. 2nd IEEE
Annual Conf. on Pervasive Computing and Communications
Workshops (PERCOMW04), USA, 2004, pp. 18í22.

[18] B. Heller, H. Herre, Ontological Categories in GOL, Axiomathes
14:71-90 Kluwer Academic Publishers, 2004.

[19] R. Hoehndorf, “Situoid theory, An ontological approach to situation
theory”, M.Sc. Thesis, University of Leipzig 2005.

[20] P. Reignier, O. Brdiczka, D. Vaufreydaz, J. L. Crowley, J.
Maisonnasse, Context-aware environments: from specification to
implementation, Expert �Systems, vol. 24, no. 5, 2007, pp. 305–320.

[21] M. Rosemann, J. Recker, Context-aware Process Design Exploring
the Extrinsic Drivers for Process Flexibility, Proc. 7th CAISE
Workshop on Business Process Modelling, Development, and
Support (BPMDS '06), 2006.

[22] O. Saidani, S. Nurcan, Towards Context Aware Business Process
Modeling, Proc. 8th CAISE Workshop on Business Process
Modeling, Development, and Support (BPMDS’07), 2007.

[23] T. Strang, C. Linnhoff-Popien, and K. Frank, CoOL: A Context
Ontology Language to enable Contextual Interoperability. Proc. of the
4th IFIP International Conference on Distributed Applications and
Interoperable Systems (DAIS2003), 2003, pp. 236í247.

[24] S. Yau and J. Liu “Hierarchical Situation Modeling and Reasoning
for Pervasive Computing,” 4th IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems and 2nd
Intl’ Workshop on Collaborative Computing, Integration, and
Assurance. SEUS 2006/WCCIA 2006., pp. 5-10.

[25] J. Ye, S. Dobson and S. McKeever, “Situation identification
techniques in pervasive computing: A review,” Pervasive and Mobile
Computing, 2011, doi:10.1016/j.pmcj.2011.01.004.

