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Abstract— This paper presents a model-driven approach to the 
specification of situations and situation detection. We offer two 
main contributions: (i) a Situation Modeling Language (SML), 
which is a graphical language for situation modeling, and  
(ii) an approach to situation detection based on the 
transformation of a SML model into a set of rules to be 
executed on a rule-based platform. We exemplify our situation-
based development approach with an application scenario in 
the domain of (mobile) banking, in which situations for 
detecting fraud-susceptible behavior are defined in SML.  
Based on the SML models, we discuss the rules that can be 
deployed on Drools for situation detection. The approach 
supports situation types defined in terms of patterns of facts, as 
well as complex situations in terms of reusable situation types, 
both at the specification level and realization level. 

Keywords: situation specification; situation detection; rule-
based implementation 

I. INTRODUCTION 
The ability of a system to perceive and react to situations 

of interest can be broadly referred to as situation awareness. 
Situation awareness requires the ability to perceive facts and 
to identify in these the patterns that characterize situations of 
interest. Situation awareness has received increasing 
attention in the latest years, e.g., in the areas of human-
computer interaction [10], in which systems are designed to 
facilitate human situation awareness; in context-aware 
ubiquitous systems [5], [6], in which situations characterize 
the user’s context to promote application adaptation; in 
autonomic computing, in which a system’s “self-situation” 
[9] is monitored to support the planning of “self-managing” 
actions; and in context-aware business process modeling 
[22], in which the “combination of all situational 
circumstances that impact process design and execution can 
be termed the context (aka situation) in which a business 
process is embedded.” [21].  

As discussed by Kokar et al. in [15], “to make use of 
situation awareness […] one must be able to recognize 
situations, […] associate various properties with particular 
situations, and communicate descriptions of situations to 
others.” The notion of situation enables designers, 
maintainers and users to abstract from the lower-level 
entities and properties that stand in a particular situation and 
to focus on the higher-level patterns that emerge from lower-
level entities in time.  

We argue that enterprise systems can profit from the 
notion of situation and its adequate support both at design-
time and at run-time. At design-time, behavior and policies 

can be defined in terms of the types of situations in which 
they apply, instead of various low-level conditions. This not 
only fosters separation of concerns through abstraction but 
also enables the definition of complex situation types by 
reusing previously defined situation types. At run-time, 
sophisticated situation detection machinery can be employed, 
enabling timely reaction to current situations.  

In order to leverage the benefits of the notion of situation, 
proper support is required at the modeling level and at the 
realization level. We address this with a model-driven 
approach to the specification of situations and realization of 
situation detection. We offer two main contributions: (i) a 
Situation Modeling Language (SML), which is a graphical 
language for situation modeling, allowing the expression of 
primitive situations and complex situations involving the 
composition of situations (with temporal constraints when 
required), and (ii) an approach to situation detection based on 
the transformation of a SML model into a set of rules to be 
executed on a rule-based platform.  

We exemplify our situation-based development approach 
with an application scenario in the domain of (mobile) 
banking, in which situations for detecting fraud-susceptible 
behavior are defined in SML. Based on the SML models, we 
discuss the rules that can be deployed on Drools for situation 
detection. 

The paper is further structured as follows: Section II 
briefly characterizes situations and sets requirements for our 
approach; Section III presents a scenario which is used to 
exemplify the application of the approach; Section IV 
introduces the Situation Modeling Language (SML); Section 
V presents a formal semantics for SML; Section VI discusses 
rule-based situation detection; Section VII discusses related 
work and, finally, Section VIII presents concluding remarks 
and indicates points for future investigation. 

II. SITUATIONS 
Situations are composite entities whose constituents are 

other entities, their properties and the relations in which they 
are involved [6]. Situations support us in conceptualizing 
certain “parts of reality that can be comprehended as a 
whole” [19]. Examples of situations include “John is 
working”, “John has fever”, “John is working and has fever”, 
“John and Paul are outdoors, at a distance of less than 10m 
from each other”, “Bank account number 87346-0 is 
overdrawn while a suspicious transaction is ongoing”, etc. 
(Technically, the sentences we use to exemplify situations 
are utterances of propositions which hold in the situations we 
consider; however, we avoid this distinction in the text for 
the sake of brevity.) 
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point in time to another: the creation and destruction of 
entities and relational context, as well as the change in 
value of intrinsic context. (We consider an asymmetric, 
irreflexive and intransitive relation, representing the 
direct accessibility between subsequent worlds.) 

− A predicate existsInWorld(w, e) that holds if an entity 
eӇ(Uڂ� S) exists in world wӇW. 

− A function time(w) that determines a value in a time 
structure for a particular world. 

− Other predicates and functional symbols derived from the 
context and SML models (and discussed in the sequel). 
Figure 10 illustrates a possible structure of the frame-

based model in our banking example. It reveals a particular 
progression of worlds with two accounts (a1 and a2), one of 
which (a1) is being accessed by a device (d1) in worlds w1, 
w2, and w3 (and not in w4). There is a parallel login in w2 
and w3, when a1 is accessed by both device d1 (situation s1) 
and device d2 (situation s2). Direct acessibility is represented 
by the arrows, thus, R = { <w1,w2>, <w2, w3>, <w3, w4> }. 
The transition between w1 and w2 is promoted by an 
occurrence creating the “Access” relational context ac2. The 
transition between w2 and w3 is the result of the destruction 
of account a2. The transition between w3 and w4 is the result 
of the destruction of ac1 and ac2.  

 
Figure 10. Illustration of the frame-based model 

We define a universal predicate for each entity class in 
the context model, which is true of a particular entity when it 
is present in world w and is an instance of that class in a 
particular world. In our example, Account(w1, a1) holds, 
while Account(w4, a2) is false.  

We likewise define a universal predicate for each 
relational context type in the context model. In our example, 
Access(w1, ac1) holds, while Access(w4, ac1) does not.  We 
also defined a predicate for each association in the context 
model. In this case, the predicate includes a world and the 
related elements in its domain (each of the association ends 
in the class diagram becomes a parameter of this predicate). 
Thus, in our example, isAccessed(w2, a1, ac1) and 
isAccessing (w2,  d1, ac1) hold, while isAccessed (w4, a1, 
ac1) and isAccessing (w4, d1, ac1) do not hold. 

Finally, we define a function for each intrinsic context 
type and attribute in the model; the domain of this function 
includes a world and the entity characterized by the intrinsic 
context (or attribute). The range is determined by the 

datatype associated with the intrinsic context type in the 
context model, thus involving potentially complex values. 
For example, Location(w1, d1) maps to latitude-longitude 
coordinates of a device.  

B. Simple Situation Types 
A simple situation type (such as e.g., LoggedIn) is 

interpreted as an open sentential formula formed by a 
conjunction of terms, each of which corresponds to an 
element in a situation type. The formula includes a free 
variable (i.e., parameter) to represent the world w in which 
the situation exists, a free variable to represent the situation 
itself, as well as a free variable to represent each entity and 
relational context element in the situation.  

Consider the LoggedIn situation type; it consists of three 
participating elements: Device, Account and Access, 
corresponding to d, a, and ac in the formula. Each of the 
participating elements in this situation (Device, Account and 
Access) contributes a term to the formula, using the universal 
predicate for each type. The connections between entities 
and context types in the situation type correspond to links 
and are also added in this conjunction, yielding:  
 

LoggedIn(w, s, d, a, ac) iff  
(Device(w, d) ٿ Account(w, a) ٿ�Access(w, ac) ٿ 
isAccessing(w, d, ac) ٿ isAccessed(w, a, ac) ).1 

 

We define that a situation of a particular type exists in a 
particular world iff there is a binding in that world which 
makes the formula true. The definition of the situation type is 
thus complete by admitting an axiom with the universal 
closure of the formula corresponding to the situation type 
(i.e., prefixing the formula with a universal quantifier for 
each free variable). Formally, for our LoggedIn example: 
 

ӁwӇW, ӁsӇS, ӁdӇU, ӁaӇU, ӁacӇU,  
LoggedIn(w, s, d, a, ac) iff 
(Device(w, d) ٿ Account(w, a) ٿ�Access(w, ac) ٿ 
isAccessing(w, d, ac) ٿ�isAccessed(w, a, ac) ). 

 

For each situation type, we must also admit an axiom to 
guarantee that the situation is unique for a particular binding 
in a particular world. Formally, in our example: 
 

ӁwӇW, ӁsӇS, Ӂs’ӇS, ӁdӇU, ӁaӇU, ӁacӇU,  
((LoggedIn(w, s, d, a, ac) ٿ 
  LoggedIn(w, s’, d, a, ac)) ĺ s=s’). 

 

Further, if the binding remains stable in subsequent 
worlds, the situation is also the same. Thus, we also admit 
the following axiom: 
 

ӁwӇW, Ӂw’ӇW, ӁsӇS, Ӂs’ӇS, ӁdӇU, ӁaӇU, ӁacӇU  
((w R w’) ٿ LoggedIn(w, s, d, a, ac) ٿ 
                     LoggedIn(w’, s’, d, a, ac)) ĺ s=s’). 

 

(In our example, this means that the identity of s1 is 
preserved across w1, w2 and w3; while the identity of s2 is 
preserved across w2 and w3.) 

Constraints on the values of intrinsic context types are 
also included in the open formula corresponding to the 

                                                           
1 Note here that we omit from this formula the following terms which are 
superfluous as all elements in this situation are elements of different types: 
d�a, d�ac, ac�a; However, these would be required for the case in which 
two elements of the same type appear as participants in a situation type. 



situation type. Each built-in formal relation (such as greater 
than, not near, equals) is interpreted as a predicate involving 
potentially complex values. In our example, the 
OngoingSuspiciousWithdrawal situation type leads to the 
following formula (where greaterThan(x, y) is defined as 
x>y):  
 

OngoingSuspiciousWithdrawal(w, s, a, atm, ow) iff 
(Account(w, a) ٿ�ATM(w, atm)ٿ� OngoingWithdrawal(w, ow) ٿ  
hasWithdrawal(w, ow, a) ٿ�doWithdrawal (w, ow, atm) ٿ 
(greaterThan(OngoingWithdrawalValue(w, ow), 1000)). 

 

As discussed for the case of the LoggedIn situation type, 
we should admit as an axiom the universal closure of the 
formula above, as well as axioms for uniqueness and 
presentation of situation identity (similar to those defined for 
LoggedIn). We omit them here for the sake of brevity, and 
focus on the construction of the open formula corresponding 
to each situation type in SML. 

C. Complex Situation Types 
A complex situation type, i.e., a situation type composed 

of other situation types, can also be interpreted as an open 
sentential formula. The formula corresponding to a complex 
situation type is derived using the same rules discussed for 
simple situation types with the addition of terms for each 
composing situation, each of which add a free variable to 
represent the composing situation.  

In our example, the SuspiciousParallelLogin situation 
type leads to the following formula:  
 

SuspiciousParallelLogin(w, s, s, s’) iff 
(LoggedIn(w, s, d, a, ac) ٿ 
LoggedIn(w, s’, d’, a’, ac’) ٿ (s�s’) ٿ 
overlaps(s, s’) ٿ (a=a’)). 

 

The overlaps predicate holds whenever s and s’ exist 
simultaneously and s begins before situation s’. Formally: 
 

Ӂs,s’ӇS overlaps(s, s’) iff   
ӃwӇW (existInWorld(w,s) ٿ� existInWorld(w,s’)) ٿ 
  (initialTime(s)<initialTime(s’)). 

 

The initial time of a situation is defined formally by: 
ӁsӇS, ӁwӇW ((initialTime(s)= time(w)) iff (w=firstWorld(s)) iff 
existsInWorld(w, s) ٿ�¬Ӄw’ӇW ((w’ R w) ٿ existsInWorld(w’, s)) 

 

While each term that corresponds to a current situation 
uses the variable w to refer to the current world (cf. example 
SuspiciousParallelLogin above), each term that corresponds 
to a past situation contributes an additional free variable to 
represent the past situation and world. This is evident in the 
SuspiciousFarwayLogin example, which leads to the 
following formula: 
 

SuspiciousFarawayLogin (w, s, s’, s’’) iff 
(LoggedIn(w, s’, d, a, ac) ٿ 
LoggedIn(wpast, s’’, d’, a’, ac’) ٿ 
(s’�s’’) ٿ� (w�wpast) ٿ before(s’, s’’, 2) ٿ (a=a’) ٿ�notnear( 
Location(firstWorld(s’),d), Location(firstWorld(s’’),d’), 500km)). 

 

Here, before(s1, s2, t) is a built-in temporal predicate. 
Figure 11 shows all supported temporal predicates. Time is 
represented in the horizontal axis and situations in black 
represent inactive situations (those that have ended). The 

formal definitions rely on comparisons of the initial time 
(shown above) and the converse final time of situations. 

 
Figure 11. Supported temporal relations between situations 

VI. SITUATION DETECTION REALIZATION 
Once the required situation types have been specified in 

SML, we proceed by deriving an implementation for 
situation detection and handling using as a starting point the 
SML models. As implementation platform we have chosen 
the Drools general-purpose rule-based engine due to its 
performance, availability and community support. Context 
information is fed as facts into the working memory of the 
Drools rule engine and rules generated in the transformation 
of SML models are executed to detect situations. 

Since there is no direct support for situations in Drools, 
we have opted to add functionality on top of the platform to 
provide such support. This enables us to reflect the overall 
structure of the SML specification with a simple rule pattern 
at the implementation level, which is beneficial with respect 
to traceability and simplicity of the transformation of SML 
models. We call the additional support for situations in 
Drools Drools Situation. Drools Situation builds on Drools 
Fusion, which is a Drools module responsible for complex 
event processing capabilities. No modification of the 
general-purpose Drools engine is required, and the support 
for situations is added through general rule patterns for 
situations and situation-independent helper classes. 

Figure 12 depicts the elements of our approach, relating 
specification level and realization level as well as design 
time and run-time aspects.  

The upper part of the figure shows the design time 
correspondences between elements of the specification level 
and the realization level. A UML context model is 
transformed into Java classes in an Acceleo 
(http://www.acceleo.org/) transformation presented in [4]. 
The transformation of SML models leads to Java classes and 
a situation detection rule set which rely on Drools Situations. 
We focus here on the design of this transformation (in 
section VI.A); the implementation of this transformation in 
Acceleo is presented in [4], along with the EMF metamodels 
for context and situation models.  
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management. Each situation class corresponds to a situation 
type in SML. Situation classes are used as situation fact 
templates, and are simple classes, with an attribute for each 
entity that plays a role in the situation. 

A referred nested situation in SML is also mapped to a 
Drools pattern, as depicted in Figure 15, which specifies a 
situation rule for the Situation SuspiciousParallelLogin 
(Figure 4) in terms of two occurrences of the Situation 
LoggedIn. The pattern refers to the situation class of the 
nested situations. Similarly to other relations, temporal 
relations are also mapped to constraints. Figure 15 illustrates 
this for the “overlaps” temporal relation.  

For each nested situation, such as the LoggedIn 
situations, we should specify whether they are current 
(active) or past (deactivated). For that, we include the exists 
operator, which checks whether a CurrentSituation fact 
exists for that situation. Similarly, for past situations, a not 
exists condition for the CurrentSituation fact should be 
defined for that situation. In Section B we further discuss 
how CurrentSituation facts are managed in the working 
memory (inserted and retracted). 
rule "SuspiciousParallelLoginRule" 
when 
    $loggedin1 : LoggedInSituation( 
                 $loggedin1_account:account) 
    exists(CurrentSituation ( 
                 situation == $loggedin1)) 
    $loggedin2 : LoggedInSituation( 
                 this overlaps $loggedin1, 
                 account == $loggedin1_account) 
    exists(CurrentSituation ( 
                 situation == $loggedin2)) 
then 
    SituationHelper.situationDetected(drools, 
SuspiciousParallelLoginSituation.class); end 

Figure 15. SuspiciousParallelLogin situation rule. 

Drools Situation offers operators for temporal reasoning 
between situations, analogously to Drools Fusion, which 
supports temporal operators based on Allen’s interval 
algebra operations [1]. However, Drools Fusion exclusively 
supports temporal relations between events, which must have 
predefined final times (not the case for situations).  

In order to overcome this shortcoming and still use the 
temporal operators offered by Drools Fusion, we have 
overridden current operators in such a way that, when 
applied to situations, they are inferred by considering the 
application of operators to the events of situation activation 
and deactivation. The new operators’ implementation is 
rather similar to the original implementation, but goes a step 
further, by extracting the event of interest from the situation 
parameter to, finally, evaluate the operators in these events 
as currently performed in Drools Fusion. 

Figure 16 depicts the implementation code for the 
Situation AccountUnderObservation (defined in Figure 8).  
In order to restrict to past instances of the Situation 
OngoingSuspiciousWithdrawal, the not exists operator for 
the CurrentSituation fact is used, as previously discussed. 

The existential operator (�) also generates an exists 
condition, which is met when a DeactivationSituationEvent 
for any OngoingSuspiciousWithdrawal situation has been 

inserted in the working memory within the past 30 days. The 
Drools operator over window is used to define a sliding 
window interval, for which we assign the 30 days value. This 
sliding window is automatically stretched by Drools when 
new instances of the DeactivationSituationEvent for that 
situation are created. 
rule "AccountUnderObservationRule" 
when 
   account : Account() 
   $ongoingsuspiciouswithdrawal1 :  
          OngoingSuspiciousWithdrawalSituation( 
                              account == account) 
   not(exists(CurrentSituation (situation == 
                 $ongoingsuspiciouswithdrawal1))) 
   exists(DeactivateSituationEvent( 
      situation == $ongoingsuspiciouswithdrawal1) 
                           over window:time(30d)) 
then 
    SituationHelper.situationDetected(drools, 
AccountUnderObservationSituation.class); end 

Figure 16. AccountUnderObservation situation rule. 

Table 1 shows a summary of the mappings between SML 
constructs and Drools Situation constructs. 

Table 1. Mappings between SML constructs and Drools Constructs 

SML Constructs  Drools Constructs 
Situation Type Drools rule (and a Java Class 

representing the Situation Fact 
Template) 

Entity types, Relational Context 
types, and nested Situations types 

Rule patterns 

Intrinsic Context types Pattern constraints 
Relations (formal, temporal and 
material) 

Pattern restrictions (with 
operators) 

B. Situation Management: Under the Hood 
A situation fact life cycle consists of its creation, activation, 
deactivation and destruction. The activation of a situation 
fact occurs simultaneously to its creation, and the 
deactivation occurs when the situation rule’s condition no 
longer holds. When the condition at the LHS holds, a 
situation instance is created; when the condition no longer 
holds, the situation instance is deactivated. Deactivated 
situation instances consist of historical records of situation 
occurrence, which may be used to detect situations that refer 
to past occurrences. Currently, we implement a simple rule-
based time-to-live mechanism for historical records, which 
considers the final time of deactivated situation instances.  

The situation’s lifecycle management strategy strongly 
relies on a Drools feature called Truth Maintenance System 
(TMS). The TMS automatically ensures the logical integrity 
of facts handled by the rule engine. A logical fact exists in 
the working memory while the conditions of the rule that has 
inserted it remain true. Thus, the solution we have used 
consists on a logically inserted fact produced by a situation 
rule to reflect the situation instance state (existence or 
nonexistence). This solution has enabled us to detect the 
activation and deactivation of a situation instance by means 
of a single rule specification.  



The situation logical fact, which we call 
CurrentSituation, is created by the SituationHelper class 
when the conditions of a situation rule are met. Internally, we 
use a deactivation rule (Figure 17) to manage the 
deactivation of a situation. The LHS of the deactivation rule 
checks when the CurrentSituation logical fact for a situation 
instance is absent (which means the condition of that 
respective situation rule has turned false and the TMS has 
automatically removed the CurrentSituation logical fact for 
that situation instance). The RHS updates the related 
SituationType instance state to non-active (a past situation). 
rule "SituationDeactivation" 
when 
  $sit: SituationType(active == true) 
  not (exists CurrentSituation(situation == $sit) 
then 
  SituationHelper.deactivateSituation(drools,  
 (Object) $sit); 
end 

Figure 17. Situation Deactivation rule 

VII. RELATED WORK 
There are several approaches to situation specification, 

which have been classified into learning-based or 
specification-based and reviewed in [25]. In learning-based 
approaches, situations are identified by using AI learning 
methods, such as Bayesian Networks and Decision Trees. In 
specification-based approaches such as the one proposed 
here, situation types are explicitly defined by capturing 
expert knowledge in situation specifications.  

 Many of the specification-based approaches to situation 
such as, e.g., [24], [15], [8], [5], [13], often specify situations 
in terms of logical expressions or formal ontologies. Most of 
these situation modeling approaches are platform-specific or 
make use of general-purpose languages, such as OWL and 
OCL. This means that they are not designed to specifically 
model situation types and, therefore, do not offer primitive 
situation constructs. In addition, many of these languages 
still lack expressiveness with respect to situation 
composition and temporal reasoning. 

As discussed in [5] several approaches presented in the 
literature [17], [14], [23] support the concept of situation as a 
means of defining particular application’s states of affairs. 
Nevertheless, these approaches usually offer reactive query 
interfaces instead of detecting situations attentively. The 
work presented in [14] discusses a situation-based theory for 
context-awareness that allows situations to be defined in 
terms of basic fact types. Fact types are defined in an ORM 
(Object-Role Modeling) context model, and situation types 
are defined using a variant of predicate logic. The realization 
supported by means of a mapping to relational databases, 
and a set of programming models based on the Java 
language. Although the design supports event triggers for 
situation detection, to the best of our knowledge and as 
reported in [14], this programming model has not been 
implemented. 

An approach that also applies Allen relations to situations 
is presented in Reigner et al [20]. The authors model what 

they call a situation network, relating situations through the 
various Allen relations. They rely on events to progress from 
situation to situation, and differently from our approach, do 
not elaborate on the patterns or conditions (constraints on 
properties, relations and existence of entities) that define a 
situation type. We could say that a situation type is “opaque” 
in their approach, which focus on the relations between 
situations. 

In our previous work, some of us have explored the use 
of general-purpose UML class diagrams with OCL 
constraints to define the conditions under which situations of 
a certain type exist [5]. An invariant in that approach is 
interpreted as the necessary and sufficient condition for a 
situation to exist. Situations modeled in SML can also be 
modelled with the technique discussed in that paper, 
however, the approach suffers from poor usability, as it relies 
on extensive use of OCL constraints, in particular to make 
sure that elements participating in a situation are related to 
each other. This is unnecessary in SML as path 
connectedness and nesting imply these constraints, which 
would necessarily have to be stated explicitly in OCL in that 
approach. This would lead to more verbose models and 
would require OCL knowledge for situation modeling. The 
result is that SML models are more compact and more usable 
than the corresponding general-purpose models in UML and 
OCL. Our previous work is also different from the work 
presented here in terms of the implementation patterns, since 
Jess, differently from Drools does not support the so-called 
logic facts (and consequently, truth maintenance had to be 
supported in the transformation itself.)  

In our earlier work some of us have also addressed issues 
involved in a distributed rule-based approach for situation 
detection (see [5], [7]). In that work, we have explored two 
distributed scenarios (beyond a centralized approach): (i) 
distributed detection with multiple engines detecting 
independent situations and (ii) a distribution scenario with a 
higher level of distribution assigning parts of the rule 
detection functionality to different rule engines. First, we 
should note that the use of SML does not in principle 
prevents us from adopting these distribution scenarios at the 
realization level. Approach (i) should be directly feasible 
with the realization patterns proposed (using Drools Server 
to connect to remote engines). Nevertheless, approach (ii) 
relies on further distribution support from the rules platform. 
In our earlier work this was provided by a distributed 
extension of Jess (DJess). Similar support is not yet available 
for Drools; should this support be available in the future, we 
expect to be able to address approach (ii) by writing an 
additional transformation from SML. 

VIII. CONCLUDING REMARKS 
In this paper, we have addressed challenges in the 

explicit support for situations at both situation specification 
level and realization level. At the specification level, we 
have enabled the modeling of situation types through a 
domain-specific graphical language called SML. At the 
realization level, we have detected situations with a rule-
based approach implemented on Drools. We have proposed 
implementation patterns for situation rules, as well as 



provided support for the implementation of complex 
situations from more primitive situations both at the 
specification and realization levels (thus preserving the 
overall specification structure in the realization). Further, we 
have implemented temporal operators for situations and the 
implementation level support for situations in Drools can 
also be employed independently of SML.  

An evaluation of the performance of situation detection is 
ongoing. Nevertheless, due to our previous experiences with 
the use of a rule-based approach for situation detection 
(employing Jess) [5] we expect the performance of situation 
detection to be adequate for most applications. As we have 
discussed earlier, the algorithms employed in pattern 
matching are optimized to avoid repeating unnecessary 
comparisons for conditions that have not been modified, 
reducing the effort for situation detection.  

We have implemented the support for graphical editing 
of SML models in an Eclipse plug-in using Obeo Designer. 
The SML diagrams depicted here have been obtained 
through screenshots of this plug-in. The situation detection 
rules that correspond to SML models produced in the tool 
are fully generated using automated transformations 
implemented in Acceleo, with no manual intervention 
required in the Drools code (see [4]). 

We intend to continue investigating on the expressive 
power of SML without compromising the simplicity we have 
achieved in the visual representation of patterns in situation 
types. One of the potential additions is a textual syntax for 
writing advanced situation constraints. We believe this can 
be offered to expert users in scenarios in which the 
expressiveness of the graphical language shows to be 
insufficient. Finally, the concrete syntax presented here 
should be subject to analysis in terms of the guidelines 
defined in [16]. 

ACKNOWLEDGMENT 
This research is funded by the Brazilian Research 

Funding Agencies FAPES (grant number 52272362/2011) 
and CNPq (grants number 483383/2010-4 and 310634/2011-
3). Izon Thomas Mielke is supported by FAPES. 

REFERENCES 
[1] J. F. Allen, “Maintaining knowledge about temporal intervals,” 

Communications of the ACM, vol. 26, Nov. 1983,  pp. 832–843. 
[2] M. Bali, Drools JBoss Rules 5.0 Developer’s Guide, Packt 

Publishing, 2009. 
[3] J. Barwise, The Situation In Logic, CSLI Lecture Notes 17, 1989. 
[4] P. D. Costa, T. I. Mielke, I. Pereira and J. P. A. Almeida, Realization 

of a Model-Driven Approach to Situations: Situation Modeling in 
Ecore and Rule-Based Situation Detection in Drools, Technical 
Report, Federal University of Espírito Santo, Brazil, 2012. Available 
at http://nemo.inf.ufes.br/files/sml_tech_report.pdf 

[5] P. D. Costa, J. P. A. Almeida, L. F. Pires and M. J. van Sinderen, 
“Situation Specification and Realization in Rule-Based Context-
Aware Applications,” Proc. 7th IFIP Intl’ Conf. Distr. Applications 
and Interoperable Systems (DAIS’07), Springer, 2007, pp. 32-47. 

[6] P. D. Costa, G. Guizzardi, J.P.A. Almeida, L. Ferreira Pires, M. van 
Sinderen, “Situations in Conceptual Modeling of Context”. Workshop 

on Vocabularies, Ontologies, and Rules for the Enterprise (VORTE 
2006) at IEEE EDOC 2006, IEEE Computer Society Press, 2006. 

[7] P. D. Costa, Architectural Support for Context-Aware Applications: 
From Context Models to Services Platforms, Ph.D. Thesis, University 
of Twente, 2007. 

[8] K. Devlin, “Situation theory and situation semantics,” in Handbook of 
the History of Logic, vol. 7, J. Woods and D. M. Gabbay, Elsevier, 
2006, pp. 601–664. 

[9] S. Dobson, R. Sterritt, M. Hinchey, Fulfilling the Vision of 
Autonomic Computing, IEEE Computer, vol. 43 , no. 1, 2010, 35-41. 

[10] M. R. Endsley, “Toward a Theory of Situation Awareness in 
Dynamic Systems”, Human Factors: The Journal of the Human 
Factors and Ergonomics Society, vol. 37 no. 1, 1995, pp. 32-64. 

[11] C. Forgy, “On the efficient implementation of production systems”, 
Ph.D. Thesis, Carnegie-Mellon University, 1979. 

[12] G. Guizzardi, “Ontological foundations for structural conceptual 
models,” Ph.D. Thesis, Centre for Telematics and Information 
Technology, University of Twente,  2005. 

[13] D. Heckmann, “Situation Modeling and Smart Context Retrieval with 
Semantic Web Technology and Conflict Resolution”, MRC 2005, 
LNAI 3946, pp. 34–47, Springer, 2006. 

[14] K. Henricksen and J. Indulska, “A software engineering framework 
for context-aware pervasive computing,” Proc. 2nd IEEE Conf. on 
Pervasive Computing and Communications (PerCom 2004), IEEE 
Press, 2004, pp. 77-86, doi: 10.1109/PERCOM.2004.1276847. 

[15] M. M. Kokar, C. J. Matheus and K. Baclawski, “Ontology-based 
situation awareness,” Information Fusion, vol. 10, Jan, 2009, pp. 83-
98, doi: 10.1016/j.inffus.2007.01.004. 

[16] D. Moody, “The ‘Physics’ of Notations: Toward a Scientific Basis for 
Constructing Visual Notations in Software Engineering”. IEEE Trans. 
Softw. Eng. 35, 6, 2009, pp. 756-779. doi:10.1109/TSE.2009.67  

[17] X. Hang Wang, D. Qing Zhang, T. Gu, H. Keng Pung, Ontology-
Based Context Modeling and Reasoning Using OWL. Proc. 2nd IEEE 
Annual Conf. on Pervasive Computing and Communications 
Workshops (PERCOMW04), USA, 2004, pp. 18í22. 

[18] B. Heller, H. Herre, Ontological Categories in GOL, Axiomathes 
14:71-90 Kluwer Academic Publishers, 2004. 

[19] R. Hoehndorf, “Situoid theory, An ontological approach to situation 
theory”, M.Sc. Thesis, University of Leipzig 2005. 

[20] P. Reignier, O. Brdiczka, D. Vaufreydaz, J. L. Crowley, J. 
Maisonnasse, Context-aware environments: from specification to 
implementation, Expert �Systems, vol. 24, no. 5, 2007, pp. 305–320. 

[21] M. Rosemann, J. Recker, Context-aware Process Design Exploring 
the Extrinsic Drivers for Process Flexibility, Proc. 7th CAISE 
Workshop on Business Process Modelling, Development, and 
Support (BPMDS '06), 2006. 

[22] O. Saidani, S. Nurcan, Towards Context Aware Business Process 
Modeling, Proc. 8th CAISE Workshop on Business Process 
Modeling, Development, and Support (BPMDS’07), 2007. 

[23] T. Strang, C. Linnhoff-Popien, and K. Frank, CoOL: A Context 
Ontology Language to enable Contextual Interoperability. Proc. of the 
4th IFIP International Conference on Distributed Applications and 
Interoperable Systems (DAIS2003), 2003, pp. 236í247. 

[24] S. Yau and J. Liu “Hierarchical Situation Modeling and Reasoning 
for Pervasive Computing,”  4th IEEE Workshop on Software 
Technologies for Future Embedded and Ubiquitous Systems and 2nd 
Intl’ Workshop on Collaborative Computing, Integration, and 
Assurance. SEUS 2006/WCCIA 2006., pp. 5-10. 

[25] J. Ye, S. Dobson and S. McKeever, “Situation identification 
techniques in pervasive computing: A review,” Pervasive and Mobile 
Computing, 2011, doi:10.1016/j.pmcj.2011.01.004. 

 


