
Universidade Federal do Espírito Santo

Centro Tecnológico

Programa de Pós-Graduação em Informática

Alessander Botti Benevides

A Model-based Graphical Editor for
Supporting the Creation, Verification and

Validation of OntoUML Conceptual Models

Vitória - ES, Brazil

February 5th, 2010

Alessander Botti Benevides

A Model-based Graphical Editor for
Supporting the Creation, Verification and

Validation of OntoUML Conceptual Models

Dissertação apresentada ao Programa de Pós-
Graduação em Informática da Universidade
Federal do Espírito Santo para obtenção do título
de Mestre em Informática.

Orientador:

Giancarlo Guizzardi

Co-orientador:

João Paulo Andrade Almeida

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

CENTRO TECNOLÓGICO

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

Vitória - ES, Brazil

February 5th, 2010

ii

Dados Internacionais de Catalogação-na-publicação (CIP)
(Biblioteca Central da Universidade Federal do Espírito Santo, ES, Brasil)

Benevides, Alessander Botti, 1982-
B465m A model-based graphical editor for supporting the creation,

verification and validation of OntoUML conceptual models /
Alessander Botti Benevides. – 2010.

289 f. : il.

Orientador: Giancarlo Guizzardi.
Co-Orientador: João Paulo Andrade Almeida.
Dissertação (Mestrado em Informática) – Universidade

Federal do Espírito Santo, Centro Tecnológico.

1. Ontologia. 2. Lógica. 3. Modelagem conceitual. 4.
Verificação de modelos conceituais. 5. Validação de modelos
conceituais. I. Guizzardi, Giancarlo. II. Almeida, João Paulo
Andrade. III. Universidade Federal do Espírito Santo. Centro
Tecnológico. IV. Título.

CDU: 004

iii

Dissertação de Mestrado sob o título “A Model-based Graphical Editor for Supporting

the Creation, Verification and Validation of OntoUML Conceptual Models”, defendida por

Alessander Botti Benevides e aprovada em 5 de Fevereiro, 2010, em Vitória, Estado do Espírito

Santo, pela banca examinadora constituída pelos doutores:

Prof. Dr. Giancarlo Guizzardi
Departamento de Informática - UFES

Orientador

Prof. Dr. João Paulo Andrade Almeida
Departamento de Informática - UFES

Co-orientador

Prof. Dr. Ricardo de Almeida Falbo
Departamento de Informática - UFES

Examinador Interno

Prof. Dr. Mateus Conrad Barcellos da Costa
Coordenadoria de Informática - Instituto

Federal do Espírito Santo (Ifes) - Campus Serra
Examinador Externo

iv

To all beings, with great respect and love.

v

Acknowledgements

I thank my parents (Cecilia and Adwalter) for teaching me the value of perseverance, my brother

(Alessandro) for his friendship, and my fiancée (Renata) for her love and patience during these

years of dedication to this research. I thank all my family and friends for the support and love.

Without their support, this thesis would not be possible.

I also specially thank my advisors Giancarlo and João Paulo for their assistance, friendship

and comprehension.

Gian, I thank you very much for showing me a whole new world of the applications of

philosophy in computer science. Before I met you, I had no idea that I could conciliate my

passion for philosophy with my career as a B.Eng. in Computer Engineering. Thank you very

much!

João Paulo, I thank you very much for your technical suggestions and help, as well as for

your comprehension and helpfulness in providing me scholarships!

Many thanks to Bernardo Ferreira Bastos Braga for his great contribution on this research,

by his ideas, suggestions and corrections.

I also thank Bernardo Nunes Gonçalves for his friendship and motivation and Kyriakos

Anastasakis for his support and suggestions.

Moreover, this research has been supported by Conselho Nacional de Desenvolvimento

Científico e Tecnológico1 (CNPq), Fundação de Apoio à Ciência e Tecnologia do Espírito

Santo2 (FAPES) (INFRA-MODELA) and Fundo de Apoio à Ciência e Tecnologia do Município

de Vitória3 (FACITEC) (MODELA). I thank very much these organizations.

Finally, I thank you for the interest in my thesis!

1http://www.cnpq.br.
2http://www.fapes.es.gov.br.
3http://www.vitoria.es.gov.br/secretarias/sedec/facitec.htm.

vi

“You must be the change you want to see

in the world.”

“We should be able to refuse to live if the

price of living be the torture of sentient

beings.”

Mohandas Karamchand Gandhi

vii

Resumo

Esta dissertação de mestrado apresenta um editor gráfico baseado em modelos para o suporte
à criação, verificação e validação de modelos conceituais e ontologias de domínio em uma
linguagem de modelagem filosoficamente e cognitivamente bem-fundada chamada OntoUML. O
editor é projetado para proteger o usuário da complexidade dos princípios ontológicos subjacentes
a essa linguagem. Adicionalmente, o editor garante a aplicação destes princípios nos modelos
produzidos por prover um mecanismo para verificação formal automática de restrições, daí
assegurando que os modelos criados serão sintaticamente corretos.

Avaliar a qualidade de modelos conceituais é um ponto chave para assegurar que os mesmos
podem ser utilizados efetivamente como uma base para o entendimento, consentimento e
construção de sistemas de informação. Por essa razão, o editor é também capaz de gerar instâncias
de modelos automaticamente por meio da transformação desses modelos em especificações na
linguagem Alloy. Como as especificações Alloy geradas incluem os axiomas modais da ontologia
de fundamentação subjacente à OntoUML, chamada Unified Foundational Ontology (UFO), as
instâncias geradas automaticamente vão apresentar um comportamento modal enquanto estiverem
sendo classificadas dinamicamente, suportando, assim, a validação das meta-propriedades modais
dos tipos fornecidos pela linguagem OntoUML.

viii

Abstract

This thesis presents a model-based graphical editor for supporting the creation, verification and
validation of conceptual models and domain ontologies in a philosophically and cognitively
well-founded modeling language named OntoUML. The editor is designed in a way that, on
one hand, it shields the user from the complexity of the ontological principles underlying this
language. On the other hand, it reinforces these principles in the produced models by providing a
mechanism for automatic formal constraint verification, hence ensuring that the created models
will be syntactically correct.

Assessing the quality of conceptual models is key to ensure that conceptual models can
be used effectively as a basis for understanding, agreement and construction of information
systems. For this reason, the editor is also capable of automatic generation of model instances
by transforming these models into specifications in the logic-based language Alloy. As the
generated Alloy specifications include the modal axioms of the foundational ontology underlying
OntoUML, named Unified Foundational Ontology (UFO), then the automatically generated
instances will present modal behaviour while being dynamically classified, thereby supporting
the validation of the modal meta-properties of the OntoUML types.

ix

List of Figures

1 UML activity diagram for the actions that lead to the building of the editor . . p. 6

2 ATL overview . p. 17

3 EMF unifies Java, XML, and UML . p. 19

4 EMF framework . p. 19

5 EMF overview . p. 20

6 GMF overview . p. 21

7 UFO excerpt regarding Substantial Universals p. 29

8 Excerpt from the UML metamodel . p. 35

9 Revised fragment of the UML 2.0 metamodel p. 36

10 UFO excerpt regarding Relations, Moments, Quality Structures, etc. p. 40

11 Example of Quality Structures . p. 42

12 Example of Characterization . p. 43

13 Example of Relator Universal, Formal Relation, Material Relation, etc. p. 45

14 Excerpt of the UML metamodel featuring classifiers and Properties p. 46

15 Revised fragment of the UML 2.0 metamodel p. 47

16 UFO excerpt regarding meronymic relations p. 51

17 Revised fragment of the UML 2.0 metamodel p. 54

18 The architecture of the editor . p. 60

19 The Ecore OntoUML metamodel . p. 63

20 A simple model . p. 80

21 Live verification example . p. 81

22 An incomplete solution to the model pictured in Fig 21 p. 81

x

23 Example of derivation of model information p. 82

24 Batch verification example . p. 86

25 Verification of the OntoUML model depicted in Fig 24 p. 86

26 A possible solution to correct the model pictured in Fig. 24 p. 87

27 A larger model . p. 88

28 A verified but invalid OntoUML model . p. 91

29 The temporal ordering of worlds of the instance shown in Fig. 30 p. 91

30 Dynamic classification of the atoms within the moments depicted in Fig. 29 . p. 92

(a) Instance at the past world . p. 92

(b) Instance at the counterfactual world p. 92

(c) Instance at the current world . p. 92

31 An attemption to correct the model shown in Fig. 28 p. 92

32 Dynamic classification of the atoms within the moments depicted in Fig. 29 . p. 93

(a) Instance at the past world . p. 93

(b) Instance at the counterfactual world p. 93

(c) Instance at the current world . p. 93

33 A possible correction to the model shown in Fig. 31 p. 93

34 Architecture . p. 95

35 An instance for the Alloy specification depicted in Listing 15 p. 116

36 Application of visualization themes on the instance shown in Fig. 35 p. 117

(a) The temporal ordering of worlds . p. 117

(b) Instance at the past moment . p. 117

(c) Instance in the current moment . p. 117

37 A second attempt to generate a feasible instance p. 118

38 The temporal ordering of worlds . p. 119

39 Atoms projected by worlds . p. 119

xi

(a) Instance at the past moment . p. 119

(b) Instance in the counterfactual moment p. 119

(c) Instance in the current moment . p. 119

(d) Instance in a future moment . p. 119

40 Instance with ordered Phases . p. 121

(a) Instance at the past moment . p. 121

(b) Instance in the counterfactual moment p. 121

(c) Instance in the current moment . p. 121

(d) Instance in a future moment . p. 121

41 Calculus of the cardinalities . p. 189

xii

List of Listings

1 An Alloy specification . p. 23

2 An Alloy specification . p. 24

3 Derivation of the meta-attribute “general” of metaclass “Classifier” p. 62

4 Derivation of the meta-relation “relatedElement” of metaclass “Relationship” p. 62

5 OCL expression that constrains a rigid substantial universal to not be a subclass

of an anti-rigid universal . p. 81

6 OCL expression that calculates upper cardinalities for one extremity of

Material Associations . p. 82

7 OCL expression that calculates upper cardinalities for the other extremity of

Material Associations . p. 83

8 OCL expression that calculates lower cardinalities for Derivations p. 84

9 OCL expression that calculates upper cardinalities for Derivations p. 84

10 Kripke structure in Alloy . p. 102

11 Modeling Categories . p. 108

12 Modeling Mixins and RoleMixins . p. 109

13 Modeling disjoint GeneralizationSets of Mixins or RoleMixins p. 109

14 The Alloy specification generated for the OntoUML model pictured in Fig. 11 p. 111

15 The Alloy specification generated for the OntoUML model pictured in Fig. 27 p. 113

16 Constraining the generation of instances . p. 117

17 Modeling the ordering of the Phases . p. 120

18 OCL expression for the first constraint on the metaclass Substance Sortal . . p. 140

19 OCL expressions for the second constraint on the metaclass Substance Sortal p. 140

List of Listings xiii

20 OCL expression for the third constraint on the metaclass Substance Sortal . . p. 141

21 OCL expression for the first constraint on the stereotype «collective» p. 142

22 OCL expression for the first constraint on the stereotype «subkind» p. 142

23 OCL expression for the first constraint on the stereotype «phase» p. 143

24 OCL expression for the second constraint on the stereotype «phase» p. 143

25 OCL expression for the first constraint on the stereotype «role» p. 144

26 OCL expression for the first constraint on the metaclass Mixin Class p. 145

27 OCL expression for the second constraint on the metaclass Mixin Class . . . p. 145

28 OCL expression for the first constraint on the stereotype «category» p. 146

29 OCL expression for the first constraint on the stereotype «mixin» p. 147

30 OCL expression for the second constraint on the stereotype «role» p. 147

31 OCL expression for the first constraint on the stereotype «roleMixin» p. 148

32 OCL expression for the first constraint on the stereotype «mode» p. 149

33 OCL expression for the first constraint on the stereotype «relator» p. 149

34 OCL expression for the second constraint on the stereotype «relator» p. 150

35 OCL expression for the first constraint on the stereotype «mediation» p. 150

36 OCL expression for the second constraint on the stereotype «mediation» . . . p. 151

37 OCL expression for the third constraint on the stereotype «mediation» p. 151

38 OCL expression for the fourth constraint on the stereotype «mediation» . . . p. 151

39 OCL expression for the fifth constraint on the stereotype «mediation» p. 152

40 OCL expression for the first constraint on the stereotype «characterization» . p. 152

41 OCL expression for the second constraint on the stereotype «characterization» p. 153

42 OCL expression for the third constraint on the stereotype «characterization» . p. 153

43 OCL expression for the fourth constraint on the stereotype «characterization» p. 153

44 OCL expression for the fifth constraint on the stereotype «characterization» . p. 154

45 OCL expressions for the first constraint on the stereotype Derivation Relation p. 154

List of Listings xiv

46 OCL expression for the second constraint on the stereotype Derivation Relation p. 155

47 OCL expression for the third constraint on the stereotype Derivation Relation p. 155

48 OCL expression for the fourth constraint on the stereotype Derivation Relation p. 155

49 OCL expression for the fifth constraint on the stereotype Derivation Relation p. 156

50 OCL expression for the first constraint on the stereotype «material» p. 156

51 OCL expression for the second constraint on the stereotype «material» p. 157

52 OCL expression for the third constraint on the stereotype «material» p. 157

53 OCL expression for the first constraint on the metaclass Property p. 158

54 OCL expression for the first constraint on the metaclass Meronymic p. 158

55 OCL expressions for the second constraint on the metaclass Meronymic . . . p. 159

56 OCL expressions for the first constraint on the metaclass componentOf p. 160

57 OCL expression for the first constraint on the metaclass subQuantityOf . . . p. 161

58 OCL expression for the second constraint on the metaclass subQuantityOf . . p. 161

59 OCL expression for the third constraint on the metaclass subQuantityOf . . . p. 162

60 OCL expressions for the fourth constraint on the metaclass subQuantityOf . . p. 162

61 OCL expressions for the first constraint on the metaclass subCollectionOf . . p. 163

62 OCL expression for the second constraint on the metaclass subCollectionOf . p. 164

63 OCL expression for the first constraint on the metaclass memberOf p. 164

64 OCL expressions for the second constraint on the metaclass memberOf . . . p. 165

65 OCL expression for the first additional constraint on the metaclass Association p. 166

66 OCL expression for the first additional constraint on the stereotype «datatype-

Relationship» . p. 166

67 OCL expression for the second additional constraint on the stereotype

«datatypeRelationship» . p. 167

68 OCL expression for the third additional constraint on the stereotype «datatype-

Relationship» . p. 167

List of Listings xv

69 OCL expression for the first additional constraint on the metaclass Directed

Binary Relationship . p. 168

70 OCL expression for the second additional constraint on the metaclass Directed

Binary Relationship . p. 168

71 OCL expression for the third additional constraint on the metaclass Directed

Binary Relationship . p. 168

72 OCL expression for the fourth additional constraint on the metaclass Directed

Binary Relationship . p. 169

73 OCL expression for the first part of the fifth additional constraint on the

metaclass Directed Binary Relationship . p. 169

74 OCL expression for the second part of the fifth additional constraint on the

metaclass Directed Binary Relationship . p. 170

75 OCL expression for the first additional constraint on the metaclass Generalizationp. 170

76 OCL expression for the second additional constraint on the metaclass

Generalization . p. 170

77 OCL expression for the first additional constraint on the stereotype «material» p. 171

78 OCL expression for the second additional constraint on the stereotype «material»p. 171

79 OCL expression for the first additional constraint on the derivation relationshipsp. 171

80 OCL expression for the first additional constraint on the stereotype «mediation»p. 172

81 OCL expression for the first additional constraint on the metaclass Meronymic p. 173

82 OCL expression for the second additional constraint on the metaclass Meronymicp. 173

83 OCL expression for the third additional constraint on the metaclass Meronymicp. 173

84 OCL expression for the fourth additional constraint on the metaclass Meronymicp. 174

85 OCL expression for the first additional constraint on the metaclass Multiplicity

Element . p. 174

86 OCL expression for the second additional constraint on the metaclass

Multiplicity Element . p. 174

87 OCL expression for the first additional constraint on the stereotype «struc-

turedDatatype» . p. 175

List of Listings xvi

88 OCL expression for the first additional constraint on the stereotype «subQuan-

tityOf» . p. 175

89 OCL expression for the second additional constraint on the stereotype

«subQuantityOf» . p. 176

90 OCL expression for the EOperation allSuperTypes() p. 176

91 OCL expression for the EOperation allSubTypes() p. 177

92 OCL expression for the EOperation isConected(x:Element) p. 177

93 OCL expression for the EOperation subInstanceType(x:Element) p. 177

94 OCL expression for the EOperation subMetaTypeKind() p. 177

95 OCL expression for the EOperation subMetaTypeCollective() p. 178

96 OCL expression for the EOperation subMetaTypeQuantity() p. 178

97 OCL expression for the EOperation hasFunctionalComplexesInstances() p. 178

98 OCL expression for the EOperation hasCollectivesInstances() p. 178

99 OCL expression for the EOperation hasQuantitiesInstances() p. 178

100 OCL expression for the EOperation deriveUpperMaterialAssociation

Ext1() . p. 179

101 OCL expression for the EOperation deriveUpperMaterialAssociation

Ext2() . p. 179

102 OCL expression for the EOperation existsDerivationConnected() p. 180

103 OCL expression for the EOperation deriveLowerDerivation() p. 180

104 OCL expression for the EOperation deriveUpperDerivation() p. 181

105 OCL expression for the derived EReference “attribute” of the metaclass Classifierp. 182

106 OCL expression for the derived EReference “general” of the metaclass Classifierp. 182

107 OCL expression for the derived EReference “generalization” of the metaclass

Classifier . p. 182

108 OCL expression for the derived EReference “specific” of the metaclass

Generalization . p. 182

List of Listings xvii

109 OCL expression for the derived EReference “general” of the metaclass

Generalization . p. 182

110 OCL expression for the derived EReference “endType” of the metaclass Propertyp. 182

111 OCL expression for the derived EReference “source” of the metaclass Propertyp. 183

112 OCL expression for the derived EReference “target” of the metaclass Property p. 183

113 OCL expression for the derived EReference “relatedElement” of the metaclass

Relationship . p. 183

114 OCL expression for the initialization of the value of the meta-attribute

isEssential of memberOf and subCollectionOf relationships p. 190

115 OCL expression for the initialization of the value of the meta-attribute

isReadOnly of the Property in the target association end of a Datatype

Relationship in the creation of the latter . p. 191

116 The ATL transformation . p. 192

117 Theme for visualization of the temporal ordering of worlds p. 235

118 Theme for visualization of atoms projected in worlds p. 236

xviii

List of Definitions

1 Existential Dependence . p. 29

2 Rigidity . p. 30

3 Anti-Rigidity . p. 30

4 subtype . p. 31

5 covering . p. 32

6 disjoint . p. 32

7 partition . p. 33

8 Relational Dependence . p. 33

9 Phase Partition . p. 34

10 Bearer of a Moment . p. 41

11 Externally Dependent Mode . p. 43

12 Independence . p. 43

13 Formal and Material Relations . p. 44

14 generic dependence . p. 51

15 essential part . p. 52

16 inseparable part . p. 52

17 mandatory part . p. 52

18 mandatory whole . p. 52

19 exclusive part . p. 54

20 general exclusive part-whole relation . p. 54

21 Rigidity (revisited) . p. 96

22 Anti-Rigidity (revisited) . p. 96

List of Definitions xix

23 specific dependence . p. 97

24 essential part (revisited) . p. 99

25 immutable part . p. 99

26 generic dependence (revisited) . p. 99

27 mandatory part (revisited) . p. 100

28 inseparable part (revisited) . p. 100

29 mandatory whole (revisited) . p. 100

30 immutable whole . p. 100

31 Local Canonicity . p. 106

32 Canonicity . p. 107

xx

List of Acronyms

ADT ATL Development Tools1

AEON Automatic Evaluation of ONtologies2

AIX Advanced Interactive eXecutive3

ALU Arithmetic and Logic Unit

AMMA ATLAS Model Management Architecture4 (Bézivin et al.(1), 2004 apud Jouault et

al.(2), 2006, p. 1)

API Application Programming Interface

ASSL A Snapshot Sequence Language

ATL ATLAS Transformation Language5

ATLAS ATLantic dAta Systems (INRIA and LINA)6

CASE Computer-Aided Software Engineering

CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico7

CPU Central Process Unit

DOE Differential Ontology Editor8

DSL Domain-Specific Language

EER Enhanced Entity-Relationship

1http://www.eclipse.org/m2m/atl.
2http://ontoware.org/projects/aeon.
3http://www-03.ibm.com/systems/power/software/aix.
4http://atlanmod.emn.fr.
5http://www.eclipse.org/m2m/atl.
6http://atlanmod.emn.fr/AMMA/atlas.
7http://www.cnpq.br.
8http://homepages.cwi.nl/~troncy/DOE.

List of Acronyms xxi

EMF Eclipse Modeling Framework9 (3)

EMOF Essential MOF (4)

EPLv1 Eclipse Public License - v1.010

FAPES Fundação de Apoio à Ciência e Tecnologia do Espírito Santo11

FACITEC Fundo de Apoio à Ciência e Tecnologia do Município de Vitória12

FOL First Order Logic

FOSS Free and Open Source Software

F-Logic Frame Logic (5)

GEF Graphical Editing Framework13 (3)

GIMP GNU Image Manipulation Program14

GTK GIMP Toolkit15

GMF Graphical Modeling Framework16

GPLv3 GNU General Public License Version 317

GNU GNU’s Not Unix!18

HP-UX Hewlett Packard UniX19

IBM International Business Machines20

IDE Integrated Development Environment

iff if and only if

9http://www.eclipse.org/modeling/emf.
10http://www.eclipse.org/org/documents/epl-v10.html.
11http://www.fapes.es.gov.br.
12http://www.vitoria.es.gov.br/secretarias/sedec/facitec.htm.
13http://www.eclipse.org/gef.
14http://www.gimp.org.
15http://www.gtk.org.
16http://www.eclipse.org/modeling/gmf.
17http://www.fsf.org/licensing/licenses/gpl.html.
18http://www.gnu.org.
19http://www.hp.com/go/hpux.
20http://www.ibm.com.

List of Acronyms xxii

INRIA Institut national de recherche en informatique et en automatique21

JET Java Emitter Templates22

JRE Java Runtime Environment

KM3 Kernel Meta Meta Model23 (6)

LINA Laboratoire d’Informatique de Nantes Atlantique24

MDA Model-Driven Architecture25 (7)

MDE Model-Driven Engineering

MDT Model Development Tools26

MOF Meta-Object Facility27 (4)

MVC Model-View-Controller

OCL Object Constraint Language (8)

OMG Object Management Group28

OML OPEN Modelling Language (9)

OPEN Object-oriented Process, Environment and Notation29

OS Operational System

OS/360 IBM System/360 Operating System

OWL Web Ontology Language (10)

PIM Platform-Independent Model30 (7)

PDM Platform Definition Model31 (7)
21http://www.inria.fr.
22http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html.
23http://wiki.eclipse.org/KM3.
24http://www.lina.univ-nantes.fr.
25http://www.omg.org/mda.
26http://www.eclipse.org/modeling/mdt.
27http://www.omg.org/mof.
28http://www.omg.org.
29http://www.open.org.au.
30http://www.omg.org/mda.
31http://www.omg.org/mda.

List of Acronyms xxiii

PowerPC Performance Optimization With Enhanced RISC - Performance Computing

PSM Platform-Specific Model32 (7)

RISC Reduced Instruction Set Computing

SAT Boolean satisfiability problem

SPARC Scalable Processor Architecture33

SUMO Suggested Upper Merged Ontology34

SUO Standard Upper Ontology35

UFO Unified Foundational Ontology (11)

UML Unified Modeling Language36 (12, 13)

URL Uniform Resource Locator

USE UML Specification Environment37 (14)

wff well-formed formula

WPF Windows Presentation Foundation38

XMI XML Metadata Interchange (15)

XML eXtensible Markup Language39

32http://www.omg.org/mda.
33http://www.sparc.org.
34http://www.ontologyportal.org.
35http://suo.ieee.org.
36http://www.uml.org.
37http://www.db.informatik.uni-bremen.de/projects/USE.
38http://windowsclient.net/wpf.
39http://www.w3.org/XML.

xxiv

List of Symbols

¬ negation logical operator

∧ logical conjunction operator

∨ logical disjunction operator

⊕ logical exclusive disjunction operator

→ conditional logical operator or function arrow, depending on the

context

↔ biconditional logical operator

∃ existential quantification operator

∃! uniqueness quantification operator

∀ universal quantification operator

� necessity logical operator

♦ possibility logical operator

, definition operator

� end of proof symbol

:: instantiation operator

� definite description operator

= equality operator

6= difference operator

+ addition operator between natural numbers

− negative operator for natural numbers, or minus operator between

natural numbers, or set-theoretic complement between sets,

depending on the context

× multiplication operator between natural numbers or Cartesian

product between two sets, depending on the context

> greater than operator between natural numbers

≥ greater or equal than operator between natural numbers

< less than operator between natural numbers or proper parthood,

depending on the context

List of Symbols xxv

≤ less or equal than operator between natural numbers or parthood,

depending on the context

] cardinality operator

Σ summation operator between natural numbers

/0 the empty set

∈ set-theoretic membership operator⋃
set-theoretic union operator

∩ set-theoretic intersection operator

N set of all natural numbers

N∗ set of all natural numbers excluding the zero (N−{0})
ℵ0 the smallest infinite cardinal number

∗ used to represent ℵ0 cardinalities in conceptual models

i inherence relation

β Bearer of a Moment

m mediation relation

L a language of quantified modal logics with identity

M model structure for the language L: 〈K,D,v〉
W set of all worlds

R binary accessibility relation defined in W×W

K Kripke structure

D possibilist domain of quantification

D(w) actualist domain of quantification regarding the world w

ε if the domain of quantification is a possibilist one, then ε is a

predicate that states the existence of an individual x ∈ D within a

world w∈W; if the domain of quantification is an actualist one, then

ε is a predicate regarding the pertinence of an individual x within

D(w) and can be explicitly defined such that ε(x), ∃y(y = x)

δ interpretation function that assigns values to the non-logical

constants of the language L and a model structure M

xxvi

Contents

List of Figures p. ix

List of Listings p. xii

List of Definitions p. xviii

List of Acronyms p. xx

List of Symbols p. xxiv

1 Introduction p. 1

1.1 Motivation . p. 1

1.2 Goals and Scope . p. 3

1.3 Approach . p. 3

1.4 Structure of the Thesis . p. 6

2 Background p. 8

2.1 Modal Logic . p. 8

2.2 MDE Technologies . p. 10

2.2.1 MDA . p. 11

2.2.2 MOF . p. 11

2.2.3 OCL . p. 12

2.2.3.1 OCL Examples . p. 14

2.2.4 ATL . p. 16

2.2.5 Eclipse IDE . p. 17

Contents xxvii

2.2.5.1 EMF . p. 18

2.2.5.2 GMF . p. 20

2.3 The Logic-based Language Alloy . p. 22

3 Unified Foundational Ontology and OntoUML Language p. 27

3.1 Classes and Generalization . p. 28

3.2 Classifiers and Properties . p. 40

3.3 Aggregation and Composition . p. 50

4 A Tool for Building and Verifying OntoUML Models p. 59

4.1 Architecture . p. 60

4.2 Definition of the OntoUML Abstract Syntax in Ecore p. 61

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions p. 64

4.3.1 Mapping the Original OntoUML Invariants into OCL Expressions . . p. 64

4.3.2 Some Additional Invariants for OntoUML p. 69

4.3.3 Automatic Initialization or Modification of Meta-Attributes’ Values . p. 73

4.4 Definition of the OntoUML Concrete Syntax by using GMF p. 75

4.5 Transforming the Ecore Metamodel and Additional OCL Constraints in a

Graphical Editor . p. 77

4.5.1 From the OntoUML Profile to OntoUML Editor p. 77

4.5.2 Licensing . p. 79

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model p. 80

4.6.1 Live Verification . p. 80

4.6.2 Deriving Model Information . p. 82

4.6.3 Batch Verification . p. 85

4.6.4 A Larger Model . p. 86

4.7 Conclusions . p. 87

Contents xxviii

5 A Tool for Supporting the Validation of OntoUML Models p. 90

5.1 Validating OntoUML Models by Instances Analysis p. 90

5.2 Architecture . p. 94

5.3 Modeling OntoUML Constructs in QS5 . p. 95

5.4 Modeling Kripke Structures in Alloy . p. 100

5.5 The Mapping from OntoUML Models to Alloy Specifications p. 103

5.6 A Case Study for the Transformation: Validating an OntoUML Model p. 113

5.6.1 Generating Instances . p. 116

5.7 Conclusions . p. 122

6 Discussion & Final Considerations p. 124

6.1 Original Contributions . p. 124

6.2 Publications . p. 125

6.3 Difficulties . p. 126

6.4 Related Work . p. 126

6.5 Final Considerations . p. 128

6.6 Future Work . p. 129

Bibliography p. 130

Appendix A -- Definition of the OntoUML Syntactical Constraints in OCL p. 139

A.1 Definition of the Original OntoUML Invariants in OCL p. 139

A.2 Definition of Additional Invariants in OCL p. 165

A.3 Definition of Additional EOperations in OCL p. 176

A.4 Definition of Derived EReferences in OCL p. 181

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in

OCL . p. 184

Appendix B -- Implementing The Mapping as an ATL Model Transforma-

Contents xxix

tion p. 192

Appendix C -- OntoUML Editor Manual p. 228

C.1 Installing the OntoUML Editor . p. 228

C.1.1 Installing the Standalone OntoUML Editor p. 228

C.1.2 Installing the OntoUML Editor Eclipse Plug-in p. 230

C.2 Creating an OntoUML Model . p. 231

C.2.1 Creating an OntoUML Model in the Standalone OntoUML Editor . . p. 231

C.2.2 Creating an OntoUML Model in the OntoUML Editor Eclipse Plug-in p. 231

C.3 Tips . p. 231

Appendix D -- OntoUML to Alloy ATL Transformation Manual p. 233

D.1 Installing the Transformation . p. 233

D.2 Transforming an OntoUML Model into an Alloy Specification p. 234

Appendix E -- Alloy Analyzer Themes p. 235

Annex A -- GPLv3 p. 240

Annex B -- EPLv1 p. 255

1

1 Introduction

This master thesis presents the results of our research on building Model-Driven Engineering

(MDE) based tools for supporting the activities of construction, verification and validation of

conceptual models, particularly OntoUML conceptual models or ontologies.

The aim of this chapter is to introduce our motivation for this research (section 1.1), our

goals and scope (section 1.2), our approach (section 1.3) and the structure of the thesis (section

1.4).

1.1 Motivation

In 16, Mylopoulos defines conceptual modeling as “the activity of formally describing

some aspects of the physical and social world around us for purposes of understanding and

communication”. In this view, a conceptual model is a means to represent what modelers (or

stakeholders represented by modelers) perceive in some portion of the physical and social world,

i.e., a means to express their conceptualization (17) of a certain universe of discourse.

Furthermore, Guizzardi defines ontology, in Computer Science, as “a conceptual specification

that describes knowledge about a domain in a manner that is independent of epistemic states

and state of affairs. Moreover, it intends to constrain the possible interpretations of a language’s

vocabulary so that its logical models approximate as well as possible the set of intended world

structures of a conceptualization C of that domain.” (17). In other words, “An ontology can be

seem as the metamodel specification for an ideal language to represent phenomena in a given

domain in reality, i.e., a language which only admits specifications representing possible state

of affairs in reality.” (17). Therefore, we understand an ontology as a conceptual model that is

homomorphic to an ideal conceptualization of the domain.

We believe that, if conceptual models are to be used effectively as a basis for understanding,

agreement, and, perhaps, construction of an information system, conceptual models should

express as accurately as possible a modeler’s intended conceptualization. More specifically, the

model should ideally describe all states of affairs that are deemed admissible and rule out those

1.1 Motivation 2

deemed inadmissible according to the conceptualization (17).

In pace with Degen et al., we argue that “every domain-specific ontology must use as

framework some upper-level ontology” (18). This claim for an upper-level (or foundational)

ontology underlying a domain-specific ontology is based on the need for fundamental ontological

structures, such as theory of parts, theory of wholes, types and instantiation, identity, dependence,

unity, etc., in order to properly represent reality. From an ontology representation language

perspective, this principle advocates that, for a modeling language to meet the requirements of

expressiveness, clarity and truthfulness in representing the subject domain at hand, it must be an

ontologically well-founded language in a strong ontological sense, i.e., it must be a language

whose modeling primitives are derived from a proper foundational ontology (19, 17).

An example of a general conceptual modeling and ontology representation language that has

been designed following these principles is the Unified Modeling Language1 (12, 13) (UML)

profile proposed in 11. This language (later termed OntoUML) has been constructed in a manner

that its metamodel reflects the ontological distinctions prescribed by Unified Foundational

Ontology (11) (UFO). UFO is a foundational ontology designed specially for conceptual

modeling languages. The ontological categories comprising UFO are motivated by a number of

theories in formal ontology, philosophical logics, cognitive science and linguistics. Moreover,

formal constraints have been incorporated in this language’s metamodel in order to incorporate

the formal axiomatization in UFO. Therefore a UML model that is ontologically misconceived

taking UFO into account is syntactically invalid when written in OntoUML.

However, one would certainly be naive to assume that modelers make no mistakes while

constructing the models and that they fully understand the theory that supports the language.

These cases could lead to ill-defined conceptual models, which may be: (i) syntactically incorrect;

(ii) syntactically correct, but unsatisfiable; (iii) syntactically correct, satisfiable, but invalid

according to the intended conceptualization.

Although OntoUML has been able to provide mechanisms for addressing a number of

classical conceptual modeling problems (20), and the language has been successfully employed

in application domains (21), (22), there was still no tool support for building, verifying (syntax

checking) or validating conceptual models and domain ontologies constructed using OntoUML.

Therefore, the aim of this thesis is to build a graphical editor in which one could build, verify

and validate an OntoUML model.
1http://www.uml.org.

1.2 Goals and Scope 3

1.2 Goals and Scope

We aim at designing an editor in a way that, on one hand, it can shield the user from the

complexity of the ontological principles underlying OntoUML, and, on the other hand, it can

reinforce these principles in the produced models by providing mechanisms for automatic formal

constraint verification, automatic model filling and assisting the validation of the models.

In the definition of the scope of the editor, we understand that it must:

• Allow the creation of conceptual models and ontologies graphically, in a simple way;

• Automatically verify models (i.e., check the OntoUML syntax constraints in models),

when suitable;

• Allow the modeler to start syntactic checks manually, when he/she deems suitable;

• Inform the reason why a model is syntactically invalid in a way the modeler understands

what is wrong, so he/she can figure out how to fix it;

• Automatically derive information from the models in specific contexts that will be shown

later, saving the user from modeling information that could be automatically inferred;

• Allow the generation of model instances with the purpose of improving the modeler’s

confidence in the validity of the model.

Therefore, the primary contribution of this thesis is to present a model-based OntoUML

graphical editor with support for: (i) automatic and manual verification of models; (ii) automatic

completion of certain parts of the model, in specific contexts; and (iii) automatic generation of

instances for supporting model validation.

1.3 Approach

In order to accomplish our goals of building an editor capable of automatic syntax checking and

automatic model filling, we employ Model-Driven Architecture2 (7) (MDA) technologies. The

architecture of the editor has been conceived to follow a Model-Driven Approach. In particular,

we have adopted the Object Management Group3 (OMG) Meta-Object Facility4 (4) (MOF)

2http://www.omg.org/mda.
3http://www.omg.org.
4http://www.omg.org/mof.

1.3 Approach 4

metamodeling architecture, the languages Ecore (23), Object Constraint Language (8) (OCL), the

Eclipse platform (24) and some of its plug-ins, mainly Eclipse Modeling Framework5 (3) (EMF),

Model Development Tools6 (MDT) and Graphical Modeling Framework7 (GMF).

Furthermore, in order to accomplish our requirement of making possible the automatic

generation of model instances we will follow an approach based on the transformation of

OntoUML models into formal specifications in the logic-based language Alloy (25, 26).

In our approach, the Alloy specification is provided to the Alloy Analyzer to generate an

instance8 composed of a set of atoms and relations (27, pp. 35-48) representing instances of

the classifiers taken from the OntoUML model and a world structure that reveals the possible

dynamics of object creation, classification, association and destruction. Each world in this

structure represents a snapshot of the objects and relations that exist in that world. This world

structure is necessary since the meta-properties characterizing most of the ontological distinctions

in UFO are modal in nature. For example, the definition of a “rigid” classifier states that it

applies necessarily to its instances in all worlds in which they exist (see Definition 21). We

have specified UFO’s modal axioms in Alloy to guarantee that the generated world structure

satisfies those axioms by construction. Therefore, the sequence of possible snapshots in this

world structure will improve a modeler’s confidence on claims of validity.

In general, we will perform the following tasks:

1. Implement the OntoUML abstract syntax (metamodel) (11, p. 316, 334, 348) as a MOF

complying metamodel, using the Ecore language, and implement the derivation of the

derived meta-relations as OCL expressions within the Ecore metamodel;

2. Define a number of OCL expressions for the automatic initialization or modification of

some meta-attributes’ values, e.g., OCL expressions for the calculation of the values of

the upper cardinality constraint for both association ends of Material Associations and

the lower and upper cardinality constraints of the source association end of Derivation

relationships9 (11, p. 331, Figs. 8-10);

3. Define the OntoUML syntactical constraints (11, ps. 317–320, 334–338, 348–352) as

OCL expressions;
5http://www.eclipse.org/modeling/emf.
6http://www.eclipse.org/modeling/mdt.
7http://www.eclipse.org/modeling/gmf.
8In order to avoid the many overloadings of the term “model” (e.g., the distinct meanings of “model” in

Conceptual Modeling and in Model Theory), when referring to models in the sense defined in Model Theory, the
Alloy developers call them instances instead (27, p. 267). Informally, in Model Theory, a model for a sentence S is
an interpretation I that makes S state something true.

9For these OntoUML concepts, see chapter 3.

1.3 Approach 5

4. Define the OntoUML concrete syntax (11, ps. 317–320, 334–338, 348–352) by using

GMF;

5. Use the EMF, MDT and GMF plug-ins in order to build the editor;

6. Revisit the possibilist10 logical formalization of some UFO concepts, formalizing them in

an actualist11 modal logic, occasionally also expanding them in order to adapt the original

formal characterization to the proposed objectives of this work. This task is important to

enable the automatically generated model instances to show the dynamics of creation and

destruction of individuals;

7. Categorize and order the worlds defined for the totally accessible world structure of QS512

into different common sense types of temporal worlds ordered by a partial order relation

of succession, so we can simulate a (branching time) temporal logic while maintaining

the modal neutrality of UFO, which do not point necessarily to a temporal interpretation.

While UFO’s formalization is based on QS5, having totally accessible world structures,

we believe that the inspection of instances in which worlds can the interpreted temporally

is more suitable for validation purposes. Thus, we constrain the world structures so that

only instances that are consistent with this temporal perspective can be generated;

8. Specify the QS5 world structure with our defined temporal types and ordering in Alloy;

9. Find mapping patterns from OntoUML models to Alloy specifications;

10. Finally, we will create an ATLAS Transformation Language13 (ATL) automatic transfor-

mation in order to transform OntoUML models into Alloy specifications.

Concluding, almost every task described above generates an MDE artifact, which is a

secondary contribution of this work. These artifacts are:

(a) An OntoUML metamodel in Ecore, with derived meta-relations implemented as OCL

expressions;

(b) A set of OCL expressions formalizing the automatic initialization or modification of some

meta-attributes’ values, e.g., OCL expressions for the calculation of the values of the upper

cardinality constraint for both association ends of Material Associations and the lower and

10For possibilism, see section 2.1.
11For actualism, see section 2.1.
12For the QS5 logics, see section 2.1.
13http://www.eclipse.org/m2m/atl.

1.4 Structure of the Thesis 6

upper cardinality constraints of the source association end of Derivation relationships (11,

p. 331, Figs. 8-10);

(c) A set of OCL expressions formalizing the OntoUML syntactical constraints;

(d) A GMF definition of the OntoUML concrete syntax;

(e) An actualist logical formalization of some UFO concepts;

(f) A categorization of worlds in a common sense temporal structure;

(g) An Alloy specification of the QS5 world structure with our defined temporal types and

ordering;

(h) A transformation specification from OntoUML models to Alloy specifications.

A UML activity diagram regarding those tasks and artifacts is shown in Fig. 1.

Figure 1: UML activity diagram for the actions that lead to the building of the editor.

1.4 Structure of the Thesis

Besides this introductory chapter, this thesis is organized in five additional chapters. Chapter 2

contains a theoretical background about (i) the system of modal logics employed in this thesis,

1.4 Structure of the Thesis 7

(ii) a number of MDE-related technologies that are relevant for this thesis, and (iii) the Alloy

language and tools. Chapter 3 contains an introduction on UFO and OntoUML. Chapter 4 is

about building a tool for model building and verification. Chapter 5 is about building a tool for

supporting model validation. Finally, in chapter 6 we pose our final considerations.

In addition, there are five appendices and two annexes. Appendix A contains the definition

of the OntoUML syntactical constraints in OCL. Appendix B contains the ATL implementation

of the transformation from OntoUML models to Alloy specifications. Appendix C contains

a short guide for installing and using the OntoUML graphical editor. Appendix D contains a

manual for installing and using the OntoUML to Alloy transformation. Appendix E contains

the themes created in order to customize the instances generated by the Alloy Analyzer. Annex

A contains the GNU General Public License Version 314 (GPLv3) and annex B contains the

Eclipse Public License - v1.015 (EPLv1).

This thesis is licensed under CC© BY:© 16.

14http://www.fsf.org/licensing/licenses/gpl.html.
15http://www.eclipse.org/org/documents/epl-v10.html.
16http://creativecommons.org/licenses/by/3.0/legalcode.

8

2 Background

In this chapter we present the theoretical background for this thesis. In section 2.1, we briefly

comment on the system of modal logics employed in this thesis. Section 2.2 presents a number

of MDE-related technologies that are relevant for this thesis, namely, MOF, OCL and ATL (in

this order). Moreover, the same subsection also presents the Eclipse Integrated Development

Environment (IDE) and a number of its plug-ins (EMF, GMF and MDT), which are important

to achieve the purposes of this work. Section 2.3 briefly presents the Alloy language and its

analyzer, named Alloy Analyzer.

2.1 Modal Logic

In this thesis, we employ two logic systems in order to formalize our logical expressions and

definitions, which are the First Order Logic (FOL) and a Quantified Modal Logics with Identity.

In the following, we will present only the latter logic.

Firstly, modal logics deals with the characterization of the modes in which a proposition

may be true or false, more specifically, their possibility, necessity and impossibility (28, p. 20).

There are many modal semantics for modal logics. We will be interested in a specific one,

which employs the notion of possible worlds composing Kripke structures (29) (which are also

called world structures). One can intuitively understand possible worlds as state of affairs that

are/were possible to happen. For example, future state of affairs are possible to happen (from the

present), while counterfactual state of affairs were possible to happen in the past.

Moreover, there are many interpretations regarding the ontological status of possible worlds,

such as modal possibilism, actualism, realism, meinongianism, combinatorialism, etc. (28,

pp. 29-32). However, a full discussion of the topic is outside the scope of this background.

Therefore, we will only discuss about the notions of actualism and possibilism, which will be

important to us.

Classical possibilism makes an ontological distinction to be drawn between being, on the

one hand, and existence, or actuality, on the other. Being is the broader of the two notions,

2.1 Modal Logic 9

encompassing absolutely everything there is in any sense. For the classical possibilist, every

existing thing is, but not everything there is exists. Things that do not exist but could have existed

are known as (mere) possibilia (30). In a possibilist modal logic, there is a unique domain of

quantification D that is the set of all beings, named possibilia. Therefore, in order to state that an

individual x ∈ D exists in a world w ∈W (where W is the set of all possbile worlds), one shall

explicitly create a predicate ε(x), which may have different extensions in different worlds.

Contrariwise, actualism does not accept this distinction between being and existence, stating

that everything that can in any sense be said to be, exists (in other words, is actual or obtains),

and denying that there is any kind of being beyond actual existence. In other words, to be is to

exist, and to exist is to be actual (31). Furthermore, an actualist modal logic will have a varying

domain of quantification D(w), because for each world w ∈W there may be a distinct set of

individuals x ∈ D(w) that exist in w. Therefore, in an actualist system, the existence operator ε

can then be explicitly defined such that ε(x), ∃y(y = x).

For the modal propositions created in the present thesis, we make use of a language L of

quantified modal logics with identity. The alphabet of L contains the traditional operators of ∧
(conjunction), ∨ (disjunction), ¬ (negation),→ (conditional),↔ (biconditional), ∀ (universal

quantification), ∃ (existential quantification), with the addition of the equality operator =, the

uniqueness existential quantification operator ∃!, and the modal monadic operators � (necessity)

and ♦ (possibility). Regarding these modal operators, if A is a well-formed formula (wff) in FOL

than �A is a wff in this logic and is read as “It is necessarily the case that A” and ♦A is also a

wff in this logic, being read as “It is possibly the case that A”. The following holds for these three

latter operators: (1) ♦A , ¬�¬A; (2) �A , ¬♦¬A and (3) ∃!x(A) , ∃y(∀x(A↔ (x = y))).

Additionally, we add that the models assumed here are the so-called normal models (32), i.e., the

equality operator is defined between individuals in the domain of quantification in each world, and

equality if it holds, it holds necessarily. In other words, the formula ∀x,y((x = y)→�(x = y))

is valid.

Now, in order to formalize the semantics of this language, we will make use of Kripke

structures. A Kripke structure K is a 〈W,R〉 structure in which W is a non-empty set of worlds

and R is a binary accessibility relation defined in W × W. We denote that a world w access a

world w8 by wRw8.

A Model-Theoretic semantics for this language can be given by defining an interpretation

function δ that assigns values to the non-logical constants of the language and a model structure

M. In this language M has a structure 〈K,D〉 where K is a Kripke structure, and D can be (i) a

possibilist domain of quantification comprising a set of beings or (ii) an actualist varying domain

2.2 MDE Technologies 10

of quantification that is a function from worlds to non-empty domains of objects that are assumed

to exist in that worlds.

Here, unless explicitly mentioned, we take worlds to represent maximal states of affairs

(states of the world). Informally, we can state that the truth of formulæ involving the modal

operators can be defined such that the semantic value of formula �A is true in world w if and

only if (iff) A is true in every world w8 accessible from w. Likewise, the semantic value of

formula ♦A is true in world w iff A is true in at least one world w8 accessible from w.

Finally, in chapter 3, following the original formal characterization of UFO and OntoUML

language (11), we assume all worlds to be equally accessible and, as a result, we have the

language of a possibilist quantified modal logic QS5. However, in order to facilitate the

understanding of the dynamics of creation and destruction of OntoUML instances within worlds,

in section 5.3 we will revisit the formalization of some UFO concepts in an actualist quantified

modal logic QS5 with a varying domain of quantification, so we do not have to define an explicit

existence predicate, which will be identified with the varying domain of quantification.

2.2 MDE Technologies

Since the creation of the first programming languages, software researchers were concerned

with the need of creating abstractions in order to help software developers to program in terms

of their design intent rather than the underlying computing environment, e.g., Central Process

Unit (CPU), memory, etc.. So, the programming languages should shield programmers from the

complexities of these environments.

For example, early programming languages, such as assembly and Fortran, shielded

developers from complexities of programming with machine code. Likewise, early operating

system platforms, such as IBM System/360 Operating System (OS/360) and Unix, shielded

developers from complexities of programming directly to hardware (33, p. 25).

Although these early languages and platforms raised the level of abstraction, they still had

a distinct “computing-oriented” focus. In particular, they provided abstractions of the solution

space - that is, the domain of computing technologies themselves - rather than abstractions of the

problem space that express designs in terms of concepts in application domains, such as telecom,

aerospace, healthcare, insurance, and biology (33, p. 25).

Since the emergence of the first Computer-Aided Software Engineering (CASE) tools,

researchers are trying to transform models into code, but the limitations of the modeling

2.2 MDE Technologies 11

languages, coding languages and platforms available at the time limited the use of these tools in

software development.

Advances in languages and platforms during the past two decades have raised the level of

software abstractions available to developers. For example, the reuse of class libraries in Object-

oriented languages, such as C++ or Java; the creation of Domain-Specific Languages (DSLs),

which offer less general primitives than the ones of general-purpose modeling languages (such

as UML) (34, p. 7) allowing solutions to be expressed in the idiom and at the level of abstraction

of the problem domain; and the advances in generic programming (35, 36).

Now, the field of MDE aims at consider models as first class entities, providing standards

for metamodeling, such as the MDA (subsection 2.2.1) and MOF and OCL languages (see

subsections 2.2.2 and 2.2.3, respectively), for model transformation, such as the ATL language

(see subsection 2.2.4), as well as tools, such as the Eclipse (subsection 2.2.5) and some of its

plug-ins, like EMF (subsubsection 2.2.5.1), GMF (subsubsection 2.2.5.2) and MDT (subsection

2.2.5).

2.2.1 MDA

The best known MDE initiative is the MDA, from the Object Management Group1 (OMG)2.

This approach defines system functionality using a Platform-Independent Model3 (7) (PIM) by

means of an appropriate DSL. Then, given a Platform Definition Model4 (7) (PDM), the PIM is

translated to one or more Platform-Specific Models5 (7) (PSMs).

The MDA is related to a number of standards, such as UML, OCL, MOF and XML Metadata

Interchange (15) (XMI). In the subsections 2.2.2 and 2.2.3 we make a brief introduction to MOF

and to OCL, respectively.

Also, some MDA standards are implemented in a tool named Eclipse, which we make

extensive use in the present thesis. Eclipse is briefly presented in subsection 2.2.5.

2.2.2 MOF

MOF concretely defines a subset of UML for describing class modeling concepts within an

object repository. MOF was first standardized in 1997, at the same time as UML. The standard

1http://www.omg.org.
2http://www.omg.org
3http://www.omg.org/mda.
4http://www.omg.org/mda.
5http://www.omg.org/mda.

2.2 MDE Technologies 12

is available at 4 (37, pp. 39-40).

MOF is a meta-meta-model that is self-defined by using a reflexive definition. It is based

mainly on three concepts, namely entity, association and package, in addition with a set of

primitive types. Furthermore, MDA postulates the use of MOF as the unique meta-meta-model

for writing meta-models (38).

In order to write metamodels within the EMF plug-in of Eclipse, we have used the Ecore

language, which is very similar to the Essential MOF (4) (EMOF) language (see section 2.2.5.1).

2.2.3 OCL

We used the OCL language in order to formalize the syntactical constraints of OntoUML.

One of the reasons we chose OCL was the tool support (e.g. parsers and interpreters) for this

language. By using OCL, the construction of the mechanism for automatic model verification

was straightforward.

The purpose of OCL is to complement the UML language. A UML diagram, such as a class

diagram, is typically not refined enough to provide all the relevant aspects of a specification.

Often, there is a need to describe additional constraints about the objects in the model, and such

constraints are frequently described in natural language, which can result in ambiguities. In order

to write unambiguous constraints, so-called formal languages, as Object Constraint Language

(8) (OCL), have been developed (8, p. 5).

OCL has been developed as a business modeling language within the International Business

Machines6 (IBM) Insurance division, and has its roots in the Syntropy method (39) (8, p. 5),

being based on a set theory and predicate logics and having a formal mathematical semantics

(40).

OCL is a pure specification language. Therefore, an OCL expression is guaranteed to be

without side effects7(8, p. 5). As a declarative language, OCL expressions specify what is a

valid instance for a given UML/MOF (meta)model and not how an instance can be created

(like procedural languages do). Therefore, by using OCL, the modeler can describe a domain

abstracting the implementation’s issues.

Also, OCL is a typed language, i.e., each OCL expression has a type (8, p. 5). This makes

6http://www.ibm.com.
7“When an OCL expression is evaluated, it simply returns a value. It cannot change anything in the model. This

means that the state of the system will never change because of the evaluation of an OCL expression, even though
an OCL expression can be used to specify a state change (e.g., in a post-condition)”(8, p. 5).

2.2 MDE Technologies 13

possible the checking of expressions before building an executable version of the model, so one

can detect errors in initial stages of the modeling process.

In UML 1.X, OCL was a language utilized in order to express constraints in model diagrams.

This means that, although the diagrams indicate that certain objects or values could be present in

the modeled system, these values are only valid if the constraints specified by the OCL invariants

were satisfied (40).

In UML 2.0, OCL can be utilized not only to specify constraints, but for a number of different

purposes (8, pp. 5-6):

• As a query language;

• To specify invariants on classes and types in the class model;

• To specify type invariant for stereotypes;

• To describe pre and post conditions on operations and methods;

• To describe guards;

• To specify target (sets) for messages and actions;

• To specify constraints on operations;

• To specify initial values or derivation rules for attributes or association ends for any

expression over a UML model.

Any OCL expression indicates a value or an object in the system. For example, the expression

“2+5” is a valid OCL expression, of type Integer, which represents the value “7”. When the

value of an expression is of type Boolean, it can be utilized as an invariant (40).

Additionaly, only a subset of the OCL 2.0 language, named Essential OCL, can be used with

EMOF (meta)models. This subset is based on the common core between UML 2.0 Infrastructure

(12) and MOF 2.0 Core (4), because the full OCL specification can only be used with the UML

language (8, pp. 1,171). The Essential OCL language is defined in 8, pp. 171-175. As we use the

Ecore language (for Ecore, see section 2.2.5.1) to build the OntoUML metamodel, then all OCL

expressions that we construct in this thesis are Essential OCL expressions.

2.2 MDE Technologies 14

2.2.3.1 OCL Examples

Now, we will get our examples of the OCL syntax from the tutorial 41. OCL has four basic

primitive datatypes: Boolean (true, false), Integer, Real and String. Furthermore, OCL has

the following comparators: <=, >= and =.

This language has the following operations for primitive types:

• Integer: *, +, -, /, div(), abs(), mod(), max(), min(), sum(), sin() and cos().

• Real: *, +, -, /, floor(), sum(), sin() and cos().

• Boolean: and, or, xor, not, implies and if-then-else.

• String: concat(), size(), substring(), toInteger() and toReal().

In OCL, there is a class named Collection that is the abstract superclass of the classes Set,

OrderedSet, Bag and Sequence. A Set is a collection without duplicates, having no order.

OrderedSet is a collection without duplicates, having an order. The Bag class is a collection

in which duplicates are allowed, having no order. Finally, a Sequence is a collection in which

duplicates are allowed, having an order.

There are also operations for Collections:

• The number of elements in a collection: size().

• The information of whether an object is part of a collection: includes().

• The information of whether an object is not part of a collection: excludes().

• The number of times that object occurs in a collection: count().

• The information of whether all objects of a given collection are part of a specific collection:

includesAll().

• The information of whether none of the objects of a given collection are part of a specific

collection: excludesAll().

• The information if a collection is empty: isEmpty().

• The information if a collection is not empty: notEmpty().

The iterators over collections:

2.2 MDE Technologies 15

• The selection of a sub-collection: select().

• When specifying a collection that is derived from some other collection, but which contains

different objects from the original collection (i.e., it is not a sub-collection) use: collect

().

• The information of whether an expression is true for all objects of a given collection:

forAll().

• The addition of all elements of a collection (where the elements must be of a type

supporting the + operation): sum().

OCL collection operation examples:

• Specifying a sequence literal: Sequence{1, 2, 3}.

• Is a collection empty?: Sequence{1, 2, 3}->isEmpty().

• Getting the size of a collection: Sequence{1, 2, 3}->size().

• Please compare: “Sequence{3, 3, 3}->size()” returns 3 while “Set{3, 3, 3}->

size()” returns 1.

• Nesting sequences: Sequence{Sequence{2, 3}, Sequence{1, 2, 3}}.

• Getting the first element of a sequence: Sequence{1, 2, 3}->first().

• Getting the last element of a sequence: Sequence{1, 2, 3}->last().

• Selecting all elements of a sequence that are smaller than 3: Sequence{1, 2, 3, 4,

5, 6}->select(i | i <= 3).

• Rejecting all elements of a sequence that are smaller than 3: Sequence{1, 2, 3, 4,

5, 6}->reject(i | i <= 3).

• Collect the names of all MOF classes: MOF!Class.allInstances()->collect(e|e.

name).

• Are all numbers in the sequence greater than 2?: Sequence{12, 13, 12}->forAll(i

| i>2).

• Exists a number in the sequence that is greater than 2?: Sequence{12, 13, 12}->

exists(i | i>2).

2.2 MDE Technologies 16

• Concatenating Sequences: Sequence{1, 2, 3}->union(Sequence{4, 5, 6}).

OCL also enables one to formulate an if-clause. For example, if three is greater than two

return “three is greater than two” else return “oh”: if 3 > 2 then 'three is greater

than two'else 'oh'endif

There are different operations to treat and analyze classes:

• The operation oclIsTypeOf() checks if a given instance is an instance of a certain type

(and not of one of its subtypes or of other types).

• The operation oclIsKindOf() checks if a given instance is an instance of a certain type

or of one of its subtypes.

• The operation allInstances() returns you all instances of a given Type.

• The operation oclIsUndefined() tests if the value of an expression is undefined (e.g., if

an attribute with the multiplicity zero to one is void or not. Please note: attributes with the

multiplicity n are often represented with collections, which may be empty and not void).

Examples on OCL class operations:

• Please compare “MOF!Attribute.oclIsKindOf(MOF!ModelElement)” is true while

“MOF!Attribute.oclIsTypeOf(MOF!ModelElement)” is false.

Finally, OCL comments start with two consecutive hyphens (“--”) and end at the end of the

line.

2.2.4 ATL

In the context of the MDE approach, model transformations are very important. ATL is a

transformation language developed as a part of the ATLAS Model Management Architecture8

(Bézivin et al.(1), 2004 apud Jouault et al.(2), 2006, p. 1) (AMMA) platform, which allows both

imperative and declarative approaches to be used in transformation definitions (2).

The ATL language is based on the OCL specification for both its data types and its declarative

expressions. But, there exist a few differences between the OCL specification and the current

ATL implementation (42).
8http://atlanmod.emn.fr.

2.2 MDE Technologies 17

As shown in Fig. 2, an ATL transformation mma2mmb.atl from a source model Ma to a

target model Mb is based on the metamodels MMa (in which Ma models are written), MMb

(in which Mb models are written), and MMATL (the ATL metamodel). All metamodels must

conform to the MOF metametamodel.

Figure 2: ATL overview (2, p. 719).

Also, the source and target models and metamodels may be expressed in XMI. Besides, one

can also use the Kernel Meta Meta Model9 (6) (KM3) notation (Jouault & Bézivin(43), 2006

apud Jouault et al.(2), 2006, p. 719) in order to write metamodels (2, p. 719).

One can find a detailed presentation of the language, examples and tutorials in Jouault &

Kurtev (apud Jouault et al.(2), 2006, p. 719) and 45 and a formal specification of the ATL

semantics in Ruscio et al. (apud Jouault et al.(2), 2006, p. 719) (2, p. 719).

This language is supported by a set of tools, named ATL Development Tools10 (ADT), which

is available as an Eclipse plug-in having an editor, a compiler and a debugger (2, p. 720).

2.2.5 Eclipse IDE

We use the Eclipse IDE mainly because it provides, in form of plug-ins, a set o functionalities

that are usefull to this project, such as tools for creation and transformation of metamodels, and

for the creation of graphical editors that are capable of syntactical verification.

In the words of The Eclipse Foundation (24):

9http://wiki.eclipse.org/KM3.
10http://www.eclipse.org/m2m/atl.

2.2 MDE Technologies 18

“Eclipse is an open source community, whose projects are focused on building
an open development platform comprised of extensible frameworks, tools and
runtimes for building, deploying and managing software across the lifecycle.
The Eclipse Foundation is a not-for-profit, member supported corporation that
hosts the Eclipse projects and helps cultivate both an open source community
and an ecosystem of complementary products and services.”(24)

In the Eclipse IDE, some functionalities are provided via independent frameworks,

implemented as plug-ins. In this thesis, we use:

• Eclipse Modeling Framework11 (3) (EMF);

• Graphical Modeling Framework12 (GMF);

• Model Development Tools13 (MDT);

• The ATLAS Transformation Language14 (ATL) plug-in for Eclipse;

• The Alloy Analyzer plug-in for Eclipse15;

2.2.5.1 EMF

In order to create the OntoUML metamodels, we have used the EMF framework. EMF is

a framework for code generation that unifies three technologies: Java, eXtensible Markup

Language16 (XML) and UML, as shown in Fig. 3. It allows us to define a model by using one

of these technologies (e.g., as a Java interface, a XML Schema or a UML diagram) and then

generate a corresponding model in any of the other technologies (37, p. 14).

The EMF models are written in a language named Ecore. Ecore is the name of the metamodel

(implemented in Java) of the EMF core. There are small, mostly naming differences between

Ecore and EMOF (a subset of the MOF 2.0 metamodel (4)). However, EMF can transparently

read and write serializations of EMOF (47).

In the words of 37, p. 39:

“MOF and Ecore have many similarities in their ability to specify classes and
their structural and behavioral features, inheritance, packages, and reflection.
They differ in the area of life cycle, data type structures, package relationships,
and complex aspects of associations.”(37, p. 39)

11http://www.eclipse.org/modeling/emf.
12http://www.eclipse.org/modeling/gmf.
13http://www.eclipse.org/modeling/mdt.
14http://www.eclipse.org/m2m/atl.
15http://alloy4eclipse.googlecode.com.
16http://www.w3.org/XML.

2.2 MDE Technologies 19

Figure 3: EMF unifies Java, XML, and UML (37, p. 14).

Now, we can update Fig. 3 in the Fig. 4.

Figure 4: EMF framework (37, p. 23).

The EMF Eclipse plug-in also provide means for the creation and verification of Ecore

(meta)models embedded with OCL expressions via the integration with the MDT framework,

which provides an implementation of the OCL language for the assessment of queries, constraints

and descriptions of operations within Ecore (meta)models.

Additionaly, as only Essential OCL can be used with EMOF (meta)models (see section

2.2.3), then all OCL expressions that we build in this thesis are Essential OCL expressions.

Fig. 5 shows an overview of the process of creating a graphical editor by using the EMF

plug-in.

Firstly, we have to create an EMF project and build an Ecore metamodel for the chosen

language. In this metamodel, we can also define some operations and some derived meta-

attributes and meta-references (which, in Ecore, are called EOperations, EAttributes and

EReferences, respectively) by including the OCL expressions.

Then, we have to automatically transform this metamodel into a Genmodel file. This file has

properties that are responsible for customizing code generation for the Ecore file (3, p. 47). If the

metamodel contains OCL expressions, then, as is described in 49, we have to set some variable

2.2 MDE Technologies 20

Figure 5: EMF overview (based on 48).

names in this Genmodel file, regarding the use of some Java Emitter Templates17 (JET) files,

which are needed in order to enable the EMF plug-in to handle, by means of the MDT plug-in,

the OCL expressions that are in the Ecore metamodel.

Following 50, from the Genmodel, we perform two automatic transformations in order to

get the Java code for the Ecore file and an EMF.Edit (51) framework, which provides generic

reusable classes, which we use to build the graphical editor.

2.2.5.2 GMF

The GMF framework is utilized in the construction of graphical editors from Ecore metamodels.

It serves as an agent between the EMF framework and the Graphical Editing Framework18

(3) (GEF) framework, which is a plug-in that allows the construction of graphical editors from

17http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html.
18http://www.eclipse.org/gef.

2.2 MDE Technologies 21

Ecore metamodels, but of difficult utilization. Fig. 6 shows an overview of the process of creating

a graphical editor by using the GMF plug-in.

Figure 6: GMF overview (52).

Firstly, we create an EMF project and build an Ecore metamodel for the chosen language.

After, we create a GMF project and two new files, which are based on the language metamodel:

a GMFGraph file, which describes the visualization of the graphical elements of the editor;

and a GMFTool file, which describes the tool palette that is utilized in order to instantiate the

constructs of the language.

In order to create a mapping between the Ecore metamodel, the GMFGraph file and the

GMFTool file, we create a GMFMap file. In this file, we map the elements from the Ecore

metamodel to their visualization specified in the GMFGraph file and their creation tools specified

in the GMFTool file. Also, in this file we can put some OCL constraints representing (i) the

syntactical constraints of the language, which can be verified in live or in batch mode19, and (ii)

the automatic initialization or modification of some meta-attributes’ values20.

Once the creation of the GMFMap file is finished, we transform this file into a GMFGen

file. This file is utilized in the automatic generation, by the GMF framework, of the Java code

that implements the editor.

19Those verification modes are explained in subsections 4.6.1 and 4.6.3, respectively.
20See subsection 4.3.3.

2.3 The Logic-based Language Alloy 22

2.3 The Logic-based Language Alloy

Alloy is a language for describing structural properties. It offers a set-based formula syntax by

which one can express constraints that are suitable to a fully automatic semantic analysis. Its

meaning is given by translation to a formally defined kernel (27, pp. 256-257). Alloy is based on

the Z language (Spivey(53), 1989 apud Jackson(25), 2006, p. 1), selecting from Z those features

that were considered essential for object modeling (27, p. 257).

The analysis of Alloy specifications is a form of constraint solving. This language supports

two kinds of analysis: simulation, in which the consistency of an invariant or operation is

demonstrated by generating an instance (a state or transition); and checking, in which a

consequence of the specification is tested by attempting to generate a counterexample, i.e.,

an structure that violates a given property of the specification. (27, p. 260)(25, p. 3)

There is a tool, named Alloy Analyzer (26), that is capable of simulating and checking Alloy

specifications. If an Alloy specification has at least one instance, it is said to be consistent; when

every possible assignment of values to the specification variables (respecting the variable type) is

an instance, then the specification is valid. The negation of a valid specification is inconsistent.

Therefore, in order to check an assertion, Alloy Analyzer looks for an instance of its negation; if

one is found, it is a counterexample (27, p. 267).

This approach is sometimes called “lightweight formal methods”, because it tries to obtain

the benefits of traditional formal methods, such as theorem proving techniques, at lower cost

(25, p. XIII).

Regarding the syntax of Alloy, its specifications are basically composed of signatures, fields,

facts, predicates, functions and assertions. In order to explain the basic Alloy constructs, we

create two simple and equivalent Alloy specifications that are shown in Listings 1 and 2. In these

Alloy specifications, we state that the classes Man and Woman partition the class Person, and

that persons must have at least one parent and any number of children. But, for a specific person,

his/her sets of parents and children must (i) not contain him/herself and (ii) have no intersection

(which is the same as stating that the elements within these sets are pairwise disjoint).

In the Alloy language, a signature is a declaration of a set that can contain only urelements

(which are called atoms (27, pp. 35-36) in Alloy). Some examples are the signatures Person,

Man and Woman, shown in lines 1 and 7 of Listing 1, and 1 and 7 of Listing 2.

Moreover, Alloy allows the definition of subsignatures (subsets) by the keywords “in”,

which collapses the ∈ and ⊆ set-theoretic operators (27, p. 55) (see line 7 of Listing 2), and

2.3 The Logic-based Language Alloy 23

“extends”, which is used to declare pairwise disjoint subsignatures of a signature (27, p. 91)

(see line 7 of Listing 1).

The keyword “abstract” (line 1 of Listing 1) indicates that when an “abstract” signature

S is extended (by using “extends”) by other subsignatures S1, . . . ,Sn, then all the atoms of S

must be atoms of at least one of the S1, . . . ,Sn signatures (27, p. 91), i.e., when S is abstract, the

subsignatures that extends S also partition S.

Furthermore, all top-level signatures (i.e., signatures that are subsignatures of no signature

(27, p. 91)) are pairwise disjoint (27, p. 91). In Alloy, relations are sets of tuples, which may be

of any finite arity (27, p. 43), but containing only atoms (also called flat relations) (27, p. 41).

They must be declared as fields within signatures (27, p. 95). Some examples are the relations

parent and children, shown in lines 2 and 3 of Listing 1, and 2 and 3 of Listing 2.

One can also use the “in” keyword to model subrelations, and the “disj” keyword to state

that some relations are pairwise disjoint (27, p. 98) (see lines 5 of Listing 1, and 5 and 8 of

Listing 2).

Besides, Alloy facts are logical statements about signatures and relations that are always

true for the whole specification (27, p. 117) (see lines 9 of Listing 1, and 8 and 10 of Listing 2).

When created within signatures, they are called signature facts and are implicitly universally

quantified over all the atoms of the signature (27, pp. 18,118,269). Some examples are shown in

lines 5 of Listing 1, and 5 of Listing 2.

Predicates are reusable parametrized constraints that only hold when invoked (27,

pp. 121,123). Some example are shown in lines 8 and 9 of Listing 1, and 9 and 10 of Listing 2.

Functions are reusable Alloy expressions (27, p. 121). Examples of functions that return the set

of grandparents of a specific person are shown in lines 10 and 11 of Listing 1, and 11 and 12 of

Listing 2. Finally, assertions are constraints that are intended to follow from the specification and

that are meant to be checked against counterexamples (27, p. 124). Examples asserting that no

person is one of his/her own grandparents are shown in lines 11 of Listing 1, and 12 of Listing 2.

This assertion do not follow from these simple Alloy specifications, so Alloy Analyzer is able to

find counterexamples in which a person is one of his/her own grandparents.

Listing 1: An Alloy specification.

1 abstract sig Person {

2 parents: some Person ,

3 children: set Person

4 }{

2.3 The Logic-based Language Alloy 24

5 disj[parents ,children]

6 }

7 sig Man , Woman extends Person {}

8 pred irreflexive [r: univ -> univ] {no iden & r}

9 fact {irreflexive[parents] and irreflexive[children]}

10 fun grandparents [x: Person] : set (Person) {(x.parents).

parents}

11 check {no x: Person | x in grandparents[x]}

Listing 2: An Alloy specification.

1 sig Person {

2 parents: some Person ,

3 children: set Person

4 }{

5 disj[parents ,children]

6 }

7 sig Man , Woman in Person {}

8 fact {disj[Man ,Woman]}

9 pred irreflexive [r: univ -> univ] {no iden & r}

10 fact {irreflexive[parents] and irreflexive[children]}

11 fun grandparents [x: Person] : set (Person) {(x.parents).

parents}

12 check {no x: Person | x in grandparents[x]}

It is worth to notice that the Alloy Analyzer can only handle formulæ that involve higher-

order quantifications if they can be eliminated by a scheme known as “skolemization”, which

turns a quantified variable into a free variable whose value can then by found by constraint

solving. Therefore, in general, Alloy Analyzer deals with first-order specifications (25, p. 72-73).

The search for instances is conducted in a space whose dimensions are specified by the user

in a “scope”, which assigns a bound to the number of objects of each type (25, p. 3). Therefore,

Alloy’s analysis is limited to a finite scope that bounds the sizes of the carrier sets of the basic

types. An instance is within a scope of k if it assigns to each type a set consisting of no more

than k atoms. If the analysis succeeds in finding an instance to an specification, consistency is

demonstrated. Failure to find an instance within a given scope, however, does not prove that the

specification is inconsistent, because, since the kernel in which Alloy is based is undecidable, it

is impossible to determine automatically whether an Alloy specification is valid or consistent

2.3 The Logic-based Language Alloy 25

(27, p. 267)(25, p. 259). In other words, the inexistence of an instance that fits in a scope k does

not imply that there is no scope larger than k in which an instance exists. In the words of Jackson

in 27, p. 274:

“Ideally, the language would be decidable. Unfortunately, the most elementary
calculus that involves relations is undecidable - even Tarski’s relational calculus,
which has no quantifiers and is strictly less expressive than first order logic.
Some compromise is thus inevitable. Alloy’s analysis finds models of formulas:
that is, assignments of values to variables for which the formula is true. When
the formula is the negation of a theorem, its models are counterexamples; when
the formula is a state invariant or operation, the models are samples (either
instances of the state or transitions). The analysis is guaranteed to be sound, in
the sense that a model returned will indeed be a model. There are therefore no
false alarms, and samples are always legitimate (and demonstrate consistency of
the invariant or operation). On the other hand, when the analysis does not return
a model, one cannot conclude that none exists. The validity of a theorem cannot
be guaranteed, and an invariant or operation that appears to be inconsistent may
in fact be consistent.” (27, p. 274)
“The analysis works by considering all potential models up to a given size,
specified by a scope that limits the number of atoms in each primitive type.
In practice, it seems that most interesting properties, whether samples or
counterexamples, can be illustrated within a small scope. So the absence
of a model within a scope gives some empirical evidence that none exists,
becoming more credible as the scope is increased.” (27, p. 274)
“The analysis is explained elsewhere (54). In short, the values of a relation
are viewed as adjacency matrices. Each relational variable is encoded as a
matrix of boolean variables whose dimensions are determined by the scope, and
a boolean formula is constructed whose models correspond to models of the
original formula. An off-the-shelf Boolean satisfiability problem (SAT) solver
is used to find solutions to the boolean formula.” (27, p. 274)

Therefore, the Alloy Analyzer translates constraints to be solved from Alloy specifications

into boolean constraints, which are fed to a SAT solver in order to verify boolean satisfiability

(25, p. XII). Furthermore, by constraining the search to a finite scope, the analysis of Alloy

specifications is decidable, and as a SAT problem, it is NP-complete. From version four, the

Alloy Analyzer translates constraints to be solved from Alloy into boolean constraints, which

are fed to the SAT-based model finder Kodkod21. From (25, p. XII):

“As solvers get faster, so Alloy’s analysis gets faster and scales to larger
problems. Using the best solvers of today, the analyzer can examine spaces that
are several hundred bits wide (that is, of 1060 cases or more).” (25, p. XII)

Moreover, when translating Alloy specifications into boolean formulæ, Alloy Analyzer

applies a variety of optimizations, where the most important is symmetry breaking. Every Alloy

21http://alloy.mit.edu/kodkod.

2.3 The Logic-based Language Alloy 26

specification has an intrinsic symmetry given by the possibility to permute the atoms in any

instance of a command, without ceasing to satisfy the Alloy specification. So, the space of

assignments (possible solutions) can be divided into equivalence classes, and the solver has to

search for only one assignment at each equivalence class (25, p. 151).

In pace with Daniel Jackson (27, p. 260), we believe that “simulation helps catch errors

of overconstraint, by reporting, contrary to the user’s intent, that no instance exists within the

finite bounds of a given “scope””, or errors of underconstraint, “by showing instances that are

acceptable to the specification but which violate an intended property.”.

Finally, the purpose of the Alloy language is well summarized by Jackson in (27, p. 260):

“Together, the two analysis enable an incremental process of specification. One
starts with a minimal model, and performs a variety of simulations to detect
overconstraint. Intended consequences are formulated, with counterexamples
suggesting additional constraints to be added to the specification. This process
helps produce a specification that has the desired properties and no more.” (27,
p. 260)

27

3 Unified Foundational Ontology
and OntoUML Language

Guizzardi, in 11, defines UFO, contributing to the definition of general ontological foundations

for the area of conceptual modeling. UFO is intended to be used “as a reference model prescribing

the concepts that should be countenanced by a well-founded conceptual modeling language, and

providing real-world semantics for the language constructs representing these concepts” (11). In

11, the author also does exactly that by proposing an ontologically well-founded version of the

class diagram part of UML 2.0, dubbed OntoUML. The ontological categories comprising UFO

are motivated by a number of theories in formal ontology, philosophical logics, cognitive science

and linguistics. Moreover, the distinctions between these categories are motivated by a number

of formal meta-properties, some of which will be discussed in the sequel.

The UML language has some well know problems regarding the representation of part-

whole relationships, as it collapses many types of parthood relations into shareable or composite

associations1 (11, pp. 341-352), and the fact that it is not capable of handling any modal

characterization, allowing one to make mistakes, such as the use of subtyping to represent

alternative allowed types (20, p. 123) (see subsection 4.6.1) and the creation of wholes that have

only one part, disobeying the weak supplementation principle (i.e., if x is a part of y then there

must be a z disjoint of x, which is also a part of y, see subsection 4.6.3).

In order to formally assess the quality of UML 2.0, 11, pp. 28-36 proposes a framework

for assessment of modeling languages. This framework proposes that in order to assess the

quality of a language, we shall create mappings between the metamodel of the language and the

metamodel of a suitable foundational ontology.

Briefly, a language will be considered suitable when all of its concepts have an unique

counterpart in the foundational ontology. If there are disjoint concepts in the ontology that are

represented by the same language construct, there will be the case of non-lucidity, also called

construct overload, which leads to ambiguity in the produced models. If there are constructs in

1As explained in section 3.3, OntoUML consider four sorts of conceptual parthood relations, viz. subQuantityOf,
subCollectionOf, memberOf and componentOf, regarding the types of their relata.

3.1 Classes and Generalization 28

the language that represent no concept in the ontology, there will be the case of unsoundness, also

called construct excess, which leads to uncertain in the produced models. If there are concepts in

the ontology that are represented by more than one language construct, there will be the case

of non-laconicity, also called construct redundancy, which leads to unnecessary complexity in

the language. Finally, if there are concepts in the ontology that are not represented by some

language construct, there will be the case of incompleteness, which leads to incompleteness in

the produced models (11).

In the following, we show the results obtained in 11 by applying this framework in the

assessment of the part of the UML 2.0 regarding class diagrams and using UFO (proposed from

chapters 4 to 7 of 11, pp. 95-309) as the reference foundational ontology. The purpose of this

assessment and reconstruction of UML 2.0 was to obtain an ontologically well-founded language

(later termed OntoUML) for building conceptual models, and, in particular, domain ontologies.

Therefore, in this chapter, we briefly present the UFO theory and some excerpts of the

OntoUML metamodel, so one can understand key concepts of OntoUML that we will make

use from now on. We will not present the assessment of UML 2.0 by the application of the

framework. One can get more details in 11, pp. 311-352.

In the assessment of UML 2.0, it was used only a fragment of the UFO ontology regarding

endurants (also named continuants, e.g., objects), as opposed to perdurants (also named occurents,

e.g., events and processes) (11, p. 211). As is done in chapter 8 of 11, pp. 311-352, in the

following three sections we present the UFO and OntoUML metamodels divided in three

fragments, viz. Classes and Generalization (section 3.1), Classifiers and Properties (section 3.2)

and Aggregation and Composition (section 3.3).

Since OntoUML is a modeling language whose metamodel is designed to be isomorphic to

the UFO ontology, the leaf ontological distinctions in the metamodel of UFO appear as modeling

primitives in the language.

3.1 Classes and Generalization

The Fig. 7 represents the UFO’s metamodel excerpt regarding Classes and Generalization. In

this excerpt, Universals are space-time independent pattern of features, which can be realized in a

number of different individuals (instances). Universals can be Monadic Universals (e.g., Person,

Sand, Forest, Woman, Teenager, Student, RelationalEntity, Supplier, Buoyancy and ChairColor)

or Relations.

3.1 Classes and Generalization 29

Figure 7: UFO excerpt regarding Substantial Universals (11, p. 315).

Monadic Universals can be Substantial Universals or Moment Universals. The distinction

between Substances and Moments is based on the formal notion of existential dependence, a

modal notion that can be briefly defined as follows:

Definition 1 (Existential Dependence): Let the predicate ε denote existence2.
We have that an individual x is existentially dependent on another individual
y iff, as a matter of necessity, y must exist whenever x exists, or formally:
ed(x,y),�(ε(x)→ ε(y)). � (55, p. 11)

Substances are existentially independent individuals, i.e., there is no entity y disjoint from x

that must exist whenever a Substance x exists. The disjointness constraint is necessary to exclude

the trivial examples, such as an instance in which an individual is existentially dependent on

its essential parts (see discussion latter in this section). Let ≤ represent the (improper) part of

relation. This constraint can be formalized as follows: dis joint(x,y), ¬∃z((z≤ x)∧ (z≤ y))

and ∀x,y((Substance(x)∧Substance(y)∧dis joint(x,y))→ (¬ed(x,y)∧¬ed(y,x))).

2In an actualist system, the existence operator ε can be explicitly defined such that ε(x), ∃y(y = x).

3.1 Classes and Generalization 30

Also, from 11, p. 95, “Substantials are entities that persist in time while maintaining their

identity”. Examples of Substances include ordinary mesoscopic objects such as an individual

person, a house, a hammer, a car, but also the so-called Fiat Objects such as the North-Sea and

its proper-parts, postal districts and a non-smoking area of a restaurant.

Therefore, Substantial Universals are Universals whose instances are Substances, i.e., whose

instances are existentially independent individuals that persist in time while maintaining its

identity (e.g., Person, Sand, Forest, Woman, Teenager, Student, RelationalEntity, Supplier and

Buoyancy).

Conversely, a Moment is an individual that can only exist in other individuals, in which it

inheres (11, p. 213) (see section 3.2 for more details) and to which it is existentially dependent.

Therefore, Moment Universals are Universals whose instances are Moments (e.g., ChairColor).

A moment can inhere on one single individual (e.g., the color of a chair, an electric charge) or on

multiple individuals (e.g., a covalent bond, a purchase order, a marriage), in which case they are

named Relational Moments or simply Relators. The particular sort of existential dependence

relation connecting a relator to the individuals it is dependent on is the formal relation of

mediation (m), which is defined in section 3.2.

Substantial Universals can be Sortal Universals or Mixin Universals. Sortal Universals

are Universals that provide a principle of individuation and identity to its instances (its

particulars)(11, p. 98) (e.g., Person, Sand, Forest, Woman, Teenager, Student, RelationalEntity,

Supplier and Buoyancy). Sortal Universal can be specialized in Rigid Sortal (e.g., Person,

Sand, Forest and Woman) and AntiRigid Sortal (e.g., Teenager and Student), for rigidity and

anti-rigidity, see Definitions 2 and 3 respectively.

Definition 2 (Rigidity): A type T is rigid if for every instance x of T, x is
necessarily (in the modal sense) an instance of T. In other words, if x instantiates
T in a given world w, then x must instantiate T in every world w8: R(T) ,
�(∀x(T(x)→�(T(x)))). � (55, p. 9)
Definition 3 (Anti-Rigidity): A type T is anti-rigid if for every instance x of
T, x is possibly (in the modal sense) not an instance of T. In other words, if x
instantiates T in a given world w, then there is a possible world w8 in which x
does not instantiate T: AR(T),�(∀x(T(x)→ ♦(¬T(x)))). � (55, p. 9)

A Rigid Sortal can be a Substance Sortal or a SubKind. A Substance Sortal is the unique

sortal that provides an identity principle to its instances (11, p. 100) (e.g., Person, Sand and

Forest). A SubKind is a rigid sortal that inherits its identity principle from a Kind that is one of

its supertypes (for the definition of subtyping, see Definition 4) (11, p. 108) (e.g., Woman, which

inherits its identity principle from Person).

Regarding generalizations, both 12, p. 64 and 13, p. 72 states that:

3.1 Classes and Generalization 31

“Where a generalization relates a specific classifier to a general classifier, each
instance of the specific classifier is also an instance of the general classifier.
Therefore, features specified for instances of the general classifier are implicitly
specified for instances of the specific classifier. Any constraint applying to
instances of the general classifier also applies to instances of the specific
classifier.” (12, p. 64),(13, p. 72)

Therefore, based on 56, we define generalization as: Definition 4 (subtype): Where a

generalization relates a specific non relational Classifier C1 to a general non relational Classifier

C2, each instance x of C1 is also an instance of C2 in every world w in which x is an instance of

C1: subtype(C1,C2),�(∀x(C1(x)→ C2(x))). �

Regarding the GeneralizationSet meta-attributes isCovering and isDisjoint, 13, p. 75 defines

them in the following way:

• “isCovering : Boolean
Indicates (via the associated Generalizations) whether or not the set
of specific Classifiers are covering for a particular general classifier.
When isCovering is true, every instance of a particular general Classifier
is also an instance of at least one of its specific Classifiers for the
GeneralizationSet. When isCovering is false, there are one or more
instances of the particular general Classifier that are not instances of at
least one of its specific Classifiers defined for the GeneralizationSet. For
example, Person could have two Generalization relationships each with
a different specific Classifier: Male Person and Female Person. This
GeneralizationSet would be covering because every instance of Person
would be an instance of Male Person or Female Person. In contrast,
Person could have a three Generalization relationship involving three
specific Classifiers: North American Person, Asian Person, and European
Person. This GeneralizationSet would not be covering because there are
instances of Person for which these three specific Classifiers do not apply.
The first example, then, could be read: any Person would be specialized
as either being a Male Person or a Female Person - and nothing else; the
second could be read: any Person would be specialized as being North
American Person, Asian Person, European Person, or something else.
Default value is false.”. (13, p. 75)

• “isDisjoint : Boolean
Indicates whether or not the set of specific Classifiers in a Generalization
relationship have instance in common. If isDisjoint is true, the specific
Classifiers for a particular GeneralizationSet have no members in
common; that is, their intersection is empty. If isDisjoint is false,
the specific Classifiers in a particular GeneralizationSet have one or
more members in common; that is, their intersection is not empty. For
example, Person could have two Generalization relationships, each with
the different specific Classifier: Manager or Staff. This would be disjoint
because every instance of Person must either be a Manager or Staff. In
contrast, Person could have two Generalization relationships involving
two specific (and non-covering) Classifiers: Sales Person and Manager.
This GeneralizationSet would not be disjoint because there are instances

3.1 Classes and Generalization 32

of Person that can be a Sales Person and a Manager. Default value is
false.” (13, p. 75)

Also, when a GeneralizationSet has the value “true” in both isCovering and isDisjoint

meta-attributes, then it is know as a “partition” (13, p. 78).

Therefore, we define covering, disjoint and partition GeneralizationSets that contains

generalizations between non relational Classifiers, such as Classes or Datatypes, as follows:

• Definition 5 (covering):

For a GeneralizationSet GS, we have a non relational Classifier (such as a Class or

a Datatype) CST that is the common supertype that is referred by all Generalizations

referred by GS, and also some non relational Classifiers C1, . . . ,Cn (n ∈ N∗) that are

the subtypes of CST that are referred by the Generalizations referred by GS. When the

value of the meta-attribute isCovering of this GeneralizationSet GS is “true”, then every

instance of the general non relational Classifier CST is also an instance of at least one

non relational Classifier in {C1, . . . ,Cn}: CoveringGeneralizationSet(CST ,C1, . . . ,Cn),

((∧1≤i≤n (Ci(x)→ CST (x)))∧ (CST (x)→ (∨1≤ j≤n C j(x)))). �

• Definition 6 (disjoint):

For a GeneralizationSet GS, we have a non relational Classifier (such as a Class or

a Datatype) CST that is the common supertype that is referred by all Generalizations

referred by GS, and also some non relational Classifiers C1, . . . ,Cn (n ∈ N∗) that

are the subtypes of CST that are referred by the Generalizations referred by GS.

When the value of the meta-attribute isDisjoint of this GeneralizationSet GS is “true”,

then every instance of a non relational Classifier Ci (i ∈ {1, . . . ,n}) is pairwise

disjoint with any instance of any non relational Classifier C j (j ∈ ({1, . . . ,n}− {i})):
Dis jointGeneralizationSet(CST ,C1, . . . ,Cn) , (∧1≤i≤n (Ci(x) → CST (x)∧ (∧1≤ j≤n

| j 6=i ¬C j(x)))). �

• Definition 7 (partition):

For a GeneralizationSet GS, we have a non relational Classifier (such as a Class or a

Datatype) CST that is the common supertype that is referred by all Generalizations referred

by GS, and also some non relational Classifiers C1, . . . ,Cn (n ∈ N∗) that are the subtypes

of CST that are referred by the Generalizations referred by GS. When both values of the

meta-attributes isCovering and isDisjoint of this GeneralizationSet GS are “true”, then

every instance of the general non relational Classifier CST is also an instance of exactly one

non relational Classifier in {C1, . . . ,Cn}: PartitionGeneralizationSet(CST ,C1, . . . ,Cn),

3.1 Classes and Generalization 33

((∧1≤i≤n Ci(x)→ CST (x))∧ (CST (x)→ (⊕1≤ j≤n C j(x)))), where ⊕ represents the

exclusive disjunction. �

Returning to the UFO metamodel, Substance Sortal can be specialized into Kind, Quantity

and Collective. Kinds are Substance Sortals that provides identity principles for its instances

(11, p. 108) (e.g., Person). Quantities are maximally self-connected objects (11, pp. 179-180)

that have no individuation and counting principles (11, p. 174) (e.g., Sand). Collectives are

collections of entities connected by an unifying relationship (11, p. 181) (e.g. Forest).

Within the AntiRigidSortal category, we have a further distinction between Phases and Roles.

Both Phases and Roles are specializations of rigid universals (Kinds/SubKinds). However, they

are differentiated w.r.t. their specialization conditions. For the case of Phases, the specialization

condition is always an intrinsic one, in other words, a Phase is a type an object instantiates

in a period of time due to an intrinsic characteristic (11, p. 104) (e.g., in Fig. 27, a Child is a

LivingPerson whose age is within a certain range; likewise, a LivingPerson is a Person who has

the property of being alive). Contrariwise, the specialization condition of a Role is a relational

one, i.e., a Role is a type an entity instantiates in a certain context (when mediated by a Relator

(11, p. 294)3), as the participation in an event or relationship (e.g., in Fig. 27, the Role Student,

played by a LivingPerson who is enrolled in (has a study relation to) a School). Formally

speaking, this distinction is based on a meta-property named Relational Dependence, which is

defined in Definition 8:

Definition 8 (Relational Dependence): A type T is relationally dependent on
another type P via relation R iff for every instace x of T, there is an instance y
of P such that x and y are related via R: R(T,P,R),�(∀x(T(x)→∃y(P(y)∧
R(x,y)))). � (55, p. 10)

Also, as discussed in 11, p. 103, formulæ 9, 10, Phases are always defined in a partition set:

“Definition 4.1 (Extension functions): Let W be a non-empty set of possible
worlds and let w ∈W be a specific world. The extension function extw(G) maps
a universal G to the set of its instances in world w. The extension function
ext(G) provides a mapping to the set of instances of the universal G that exist in
all possible worlds, such that
1. ext(G) =

⋃
w∈W

extw(G)” (11, pp. 100-101, Definition 4.1)

“. . . Let ‹P1 . . .Pn› be a phase-partition that restricts the sortal S. Then we have
that for all w ∈W:
9. extw(S) =

⋃
Pi∈〈p1...pn〉

extw(Pi)

and for all Pi,Pj ∈‹P1 . . .Pn› (with i 6= j) we have that
10. extw(Pi)∩ extw(Pj) = /0” (11, p. 103)

3For an explanation on the mediation relation and the metaclass Relator, see section 3.2.

3.1 Classes and Generalization 34

Because, from formula 9 in this citation, the GeneralizationSet containing the Phases is

covering, and from formula 10, it is disjoint.

For instance, in Fig. 27, the universals Child, Teenager and Adult define a phase partition for

the Phase LivingPerson. As consequence, we have that in an each world w, every LivingPerson

is either a Child, a Teenager or an Adult in w and never more than one of these.

Additionally, from 11, p. 104 we have that:

“Finally, it is always possible (in the modal sense) for an instance x of S to
become an instance of each Pi, i.e., for any Pi ∈‹P1 . . .Pn› which restricts S,
and for any instance x such that x ∈ extw(S), there is a world w8 ∈W such
that x ∈ extw8(Pi). This is equivalent of stating that for any Pi ∈‹P1 . . .Pn› the
following holds
11. ext(S) = ext(Pi)” (11, p. 104)

These Phase constraints are formalized by Definition 9: Definition 9 (Phase Partition): If

in a world w, x is an instance of a SortalClass SC that is partitioned in Phase subclasses

‹P1, . . . ,Pn›, then, for every Pi such that i ∈ {1, . . . ,n} there must exist at least one world

w8 in which x instantiates Pi: PhasePartition(SC,P1, . . . ,Pn) , ((∧1≤i≤n (Pi(x)→ SC(x)∧
(∧1≤ j≤n | j 6=i ♦P j(x))))∧ (SC(x)→ (⊕1≤k≤n Pk(x)))). �

In summary, in the model depicted in Fig. 27, the following example highlights the modal

distinction between the rigid universal (Kind) Person, the (Role) universal Student, and the

(Phase) universal Teenager. Suppose they are all instantiated by the individual John in a

given circumstance. Whilst John can cease to be a Student and a Teenager (and there were

circumstances in which John was none of the two), he cannot cease to be a Person. In other

words, in a conceptualization that models Person as a Kind and Student as a Role, while the

instantiation of the role Student has no impact on the identity of an individual, if an individual

ceases to instantiate the Kind Person, then it ceases to exist as the same individual. Moreover,

John instantiates the Phase Teenager and can cease to instantiate it due to changes of its age (an

intrinsic property). John also contingently instantiates Student and can cease to instantiate it, but

now motivated to a change in a relational property. Furthermore, 20, p. 117 formally proves that

a rigid universal cannot have as its superclass an anti-rigid one. Consequently, a Role cannot

subsume a Kind in UFO.

Mixin Universals are abstractions of properties that are common to multiple disjoint types

(11, p. 112) (e.g., RelationalEntity, Supplier and Buoyancy). They can be Rigid Mixins (e.g.,

RelationalEntity) or NonRigid Mixins (e.g., Supplier and Buoyancy). Rigid Mixins can be

specialized into Categories, which classify entities that instantiate different Kinds, but share

some essential characteristic (11, p. 112) (e.g., RelationalEntity as a generalization of Person

3.1 Classes and Generalization 35

and Intelligent Agent). NonRigid Mixins represent characteristics that are essential to some of

its instances and accidental to others.

NonRigid Mixins can be classified as AntiRigid Mixins (e.g., Supplier) or SemiRigid Mixins

(e.g., Buoyancy). AntiRigid Mixins can be specialized into Role Mixins, which represents

abstractions of common properties of Roles (11, p. 112) (e.g., Supplier). SemiRigid Mixins can

be specialized into Mixins, which represent non-rigid non-sortal entities, representing properties

that are essential to some of its instances and accidental to others (11, p. 113) (e.g., Buoyancy,

which is an essential characteristic for a boat but an accidental one for a chair).

By applying the framework for assessment of modeling languages proposed in 11, pp. 28-36

and using the excerpt of UFO shown in Fig. 7, 11, p. 314 revise the excerpt of the UML 2.0

metamodel shown in Fig. 8, creating the excerpt of the OntoUML metamodel pictured by Fig. 9.

Figure 8: Excerpt from the UML metamodel featuring the metaclasses Classifier, Class,
Generalization and GeneralizationSet (11, p. 312).

OntoUML profile regarding the categories depicted in Fig. 9

Metaclass: Substance Sortal

3.1 Classes and Generalization 36

Figure 9: Revised fragment of the UML 2.0 metamodel according to the ontological categories
of Fig. 7 (11, p. 316).

Description: Substance Sortal is an abstract metaclass that represents the general properties

of all substance sortals, i.e., rigid, relationally independent object universals that supply a

principle of identity for their instances. Substance Sortal has no concrete syntax. Thus, symbolic

representations are defined by each of its concrete subclasses.

Constraints:

1. Every substantial object represented in a conceptual model using this profile must be

an instance of a substance sortal, directly or indirectly. This means that every concrete

element of this profile used in a class diagram (isAbstract = false) must include in its

3.1 Classes and Generalization 37

general collection one class stereotyped as either «kind», «quantity» or «collective»;

2. A substantial object represented in a conceptual model using this profile cannot be an

instance of more than one ultimate substance sortal. This means that any stereotyped class

in this profile used in a class diagram must not include in its general collection more than

one substance sortal class. Moreover, a substance sortal must also not include another

substance sortal nor a «subkind» in its general collection, i.e., a substance sortal cannot

have as a supertype a member of {«kind», «subkind», «quantity», «collective»};

3. A Class representing a rigid substantial universal cannot be a subclass of a Class

representing an anti-rigid universal. Thus, a substance sortal cannot have as a supertype

(must not include in its general collection) a member of {«phase», «role», «roleMixin»}.

Stereotype: «collective»

Description: A «collective» represents a substance sortal whose instances are collectives,

i.e., they are collections of complexes that have a uniform structure. Examples include a deck of

cards, a forest, a group of people, a pile of bricks. Collectives can typically relate to complexes

via a constitution relation. For example, a pile of bricks that constitutes a wall, a group of

people that constitutes a football team. In this case, the collectives typically have an extensional

principle of identity, in contrast to the complexes they constitute. For instance, The Beatles was

in a given world w constituted by the collective {John, Paul, George, Pete} and in another world

w8 constituted by the collective {John, Paul, George, Ringo}. The replacement of Pete Best by

Ringo Star does not alter the identity of the band, but creates a numerically different group of

people.

Constraints:

1. A collective can be extensional. In this case the meta-attribute isExtensional is equal to

True. This means that all its parts are essential and the change (or destruction) of any of

its parts terminates the existence of the collective. We use the symbol {extensional} to

represent an extensional collective.

Stereotype: «subkind»

3.1 Classes and Generalization 38

Description: A «subkind» is a rigid, relationally independent restriction of a substance sortal

that carries the principle of identity supplied by it. An example could be the subkind MalePerson

of the kind Person. In general, the stereotype «subkind» can be omitted in conceptual models

without loss of clarity.

Constraints:

1. A «subkind» cannot have as a supertype (must not include in its general collection) a

member of {«phase», «role», «roleMixin»}.

Stereotype: «phase»

Description: A «phase» represents the phased-sortals phase, i.e. anti-rigid and relationally

independent universals defined as part of a partition of a substance sortal. For instance,

〈Caterpillar, Butterfly〉 partitions the kind Lepdopterum.

Constraints:

1. Phases are anti-rigid universals and, thus, a «phase» cannot appear in a conceptual model

as a supertype of a rigid universal;

2. The phases {P1. . . Pn} that form a phase-partition of a substance sortal S are represented

in a class diagram as a disjoint and complete generalization set. In other words, a

GeneralizationSet with (isCovering = true) and (isDisjoint = true) is used in a representation

mapping as the representation for the ontological concept of a phase-partition.

Stereotype: «role»

Description: A «role» represents a phased-sortal role, i.e. anti-rigid and relationally

dependent universal. For instance, the role student is played by an instance of the kind Person.

Constraints:

1. Roles are anti-rigid universals and, thus, a «role» cannot appear in a conceptual model as a

supertype of a rigid universal.

3.1 Classes and Generalization 39

Metaclass: Mixin Class

Description: Mixin Class is an abstract metaclass that represents the general properties of all

mixins, i.e., non-sortals (or dispersive universals). Mixin Class has no concrete syntax. Thus,

symbolic representations are defined by each of its concrete subclasses.

Constraints:

1. A class representing a non-sortal universal cannot be a subclass of a class representing

a Sortal. As a consequence of this postulate we have that a mixin class cannot have as a

supertype (must not include in its general collection) a member of {«kind», «quantity»,

«collective», «subkind», «phase», «role»};

2. A non-sortal cannot have direct instances. Therefore, a mixin class must always be depicted

as an abstract class (isAbstract = true).

Stereotype: «category»

Description: A «category» represents a rigid and relationally independent mixin, i.e.,

a dispersive universal that aggregates essential properties which are common to different

substance sortals. For example, the category RationalEntity as a generalization of Person

and IntelligentAgent.

Constraints:

1. A «category» cannot have a «roleMixin» as a supertype. In other words, together with

condition 1 for all mixins we have that a «category» can only be subsumed by another

«category» or a «mixin».

Stereotype: «mixin»

Description: A «mixin» represents properties which are essential to some of its instances

and accidental to others (semi-rigidity). An example is the mixin Seatable, which represents a

property that can be considered essential to the kinds Chair and Stool, but accidental to Crate,

Paper Box or Rock.

3.2 Classifiers and Properties 40

Constraints:

1. A «mixin» cannot have a «roleMixin» as a supertype.

3.2 Classifiers and Properties

The Fig. 10 represents the UFO’s metamodel excerpt regarding Classifiers and Properties. In

this excerpt, the metaclass Moment Universal (also present in the metamodel excerpt pictured in

Fig. 7) is specialized in Intrinsic Moment Universals, which characterizes Object Universals and

are existentially dependent on them, and Relator Universals, which are existentially dependent

on many entities.

Figure 10: UFO excerpt regarding Relations, Moments, Quality Structures and related categories
(11, p. 324).

Quality Structures are spaces of values in which individual qualities can obtain their values.

The concept of Quality Structures represents “the ontological interpretation of the UML DataType

construct”(11, p. 326). This concept is specialized into Quality Dimensions and Quality Domains.

A Quality Dimension is composed of the set of values that a quality can take and the formal

3.2 Classifiers and Properties 41

relations between them. A Quality Domain is a set of Quality Dimensions4. For example, the

type of quality “color” is associated to a threedimensional Quality Domain composed by the

Quality Dimensions hue, saturation and brightness, so every color has as a value a point in a

threedimensional Quality Domain.

The instances of Moment Universal can only exist in other individuals, by inhering on them.

The inherence relation of x in y is symbolized as i(x,y)5 and implies existential dependence (see

Definition 1) from the instances of Moment Universals to other individuals, named their bearers

(11, p. 213). Definition 10 (Bearer of a Moment): The bearer of a moment x is the unique6

individual y such that x inheres in y. Formally, β (x) , �y i(x,y). � (11, p. 214). Existential

dependence can be used to differentiate Intrinsic Moment Universals and Relator Universals:

instances of Intrinsic Moment Universals are dependent on a single individual; instances of

Relator Universals depend on a plurality of individuals (11, p. 213).

Intrinsic Moment Universals are the foundation for attributes and formal comparative

relationships. Intrinsic Moment Universal is specialized into Quality Universal and Mode

Universal. A Quality Universal is an instance of Intrinsic Moment Universal that is associated to

a Quality Structure (11, p. 224) by means of Attribute Functions. A Mode Universal is a Intrinsic

Moment Universal that is not directly related to Quality Structures (11, p. 237) (e.g., abilities,

beliefs and thoughts are existentially dependent on a single Person).

Attribute Functions are used to map instances of Quality Universals to points in Quality

Structures. “. . . attribute functions are therefore the ontological interpretation of UML attributes,

i.e., UML Properties which are owned by a given classifier.”. (11, p. 325)7

In order to exemplify Quality Dimensions, Quality Domains, Quality Universals and

Attribute Functions, let us create an OntoUML model, pictured in Fig. 11, in which we have

the Substantial Universal Person (actually, a Kind), whose instances exemplify the Quality

Universal Age (in other words, the Kind Person has an “age” attribute). Thus, for an arbitrary

instance x of Person there is a quality a (instance of the Quality Universal Age) that inheres in

x. Associated with Age, and in the context of a given measurement system, there is a Quality

4In OntoUML, Quality Dimensions are represented by Simple Datatypes, and Quality Domains are represented
by Structured Datatypes. Although SimpleDatatypes and StructuredDatatypes were not present in Fig. 15 (taken
from 11, p. 334), they are present in the OntoUML metamodel as specializations of the metaclass Datatype.

5See 11, p. 213 for the definition of inherence
6The upside-down iota operator (�) used in a formula such as �xφ is the definite description operator defined by

Whitehead and Russel in 57, p. 181, implying both the existence and the uniqueness of an individual x satisfying
predicate φ .

7In OntoUML, an Attribute Function is represented by a Datatype Relationship from the owning Classifier to a
Datatype, such that its navigable end name is the name of the attribute. Although Datatype Relationships were not
present in Fig. 15, created in the specification of OntoUML in 11, they are present at later revisions of the language
as specializations of the metaclass Directed Binary Relationship.

3.2 Classifiers and Properties 42

Dimension ageValue that is a linear structure isomorphic to the natural numbers (age ∈ N)

obeying the same ordering structure. Thus, we represented the Quality Dimension ageValue as

the Simple Datatype NaturalNumber shown in Fig. 11. In this case, we can define an Attribute

Function age(Year), which maps each instance of Person (and in particular x) onto a point in the

Quality Dimension ageValue (in OntoUML, we represented the Attribute Function age(Year)

as a Datatype Relationship with “age” as its navigable end name, from the Kind Person to the

Simple Datatype NaturalNumber). In a similar way, we state that the instances of Substantial

Universal Person also exemplify the Quality Universal Birthday (in other words, the Kind Person

has a “birthday” attribute). Associated with Birthday, there is a Quality Domain birthdayValue

that contains three Quality Dimensions, namely, dayValue, monthValue and yearValue that

are natural numbers (we are simplifying the calendar domain here, because for each calendar

system (e.g., Gregorian, Julian, Hebrew, Buddhist, Hindu, Persian, Islamic, Chinese, Ethiopian,

etc), days, months and years may have different constraints on their possible values8. For

example, for the Gregorian calendar, we have to model another field for “A.D” or “B.C.”

statements, or model years as integers instead of natural numbers). Therefore, we represented the

Quality Domain birthdayValue as the Structured Datatype Birthday, which has three Datatype

Relationships (with “day”, “month” and “year” as the navigable end names) to the Simple

Datatype NaturalNumber. In this case, we can define an Attribute Function birthday, which maps

each instance of Person (and in particular x) onto a vector in the corresponding 3-dimensional

Quality Domain birthdayValue (in OntoUML, we represented the Attribute Function birthday as

a Datatype Relationship with “birthday” as its navigable end name, from the Kind Person to the

Structured Datatype Birthday).

Figure 11: Example of Quality Structures.

An Intrinsic Moment Universal IMU is said to characterize an Universal U if for every x

that is an instance of the Universal U (symbolized as x::U) there is at least one y::IMU such

that i(y,x) (11, p. 221). For example, the Mode Universal Mental State characterizes the Kind

8After choosing a calendar system, those constraints could be written as OCL expressions in the model shown in
Fig. 11.

3.2 Classifiers and Properties 43

Person, so every instance x of Person bearers (for bearing, see Definition 10) at least one instance

y of Mental State, as shown in Fig. 12.

Figure 12: Example of Characterization.

Relator Universals are aggregations of all qua individuals that share the same foundation

(11, p. 240). A qua individual is defined as an individual that bears all externally dependent

modes (Mode Universals’ instances) of an entity that share the same dependencies and the same

foundation. External dependence is defined in Definition 11 (11, pp. 218,238) in the following

way:

Definition 11 (Externally Dependent Mode): A mode x is externally depen-
dent iff it is existentially dependent of an individual which is independent
of its bearer (see Definition 10). Formally, ExtDepMode(x) , Mode(x)∧
∃y indep(y,β (x))∧ ed(x,y)9. � (11, p. 238)
Definition 12 (Independence): indep(x,y) , ¬ed(x,y) ∧ ¬ed(y,x). � (11,
p. 218)

Intuitively, a qua individual is the consideration of an individual only w.r.t certain aspects

that it has due to the participation in a certain relation (e.g., Alex qua student, due to Alex being

enrolled in a School) (11, p. 239).

A Relator Universal RU mediates another Substantial Universal SU by means of a mediation

relation, symbolized by mediation(SU,RU). If x, y and z are three distinct individuals such that:

(i) x::RU; (ii) y is a qua individual and y is a part of x; (iii) z::SU and y inheres in z; then we have

that x mediates z, symbolized by m(x,z) and such that m::mediation (11, pp. 240-241). Also,

every instance of a Relator Universal must mediate at least two disjoint instances of Substantial

Universals. Relator Universals are the foundation for Material Relations.

The metaclass Relation is specialized into Material Relation and Formal Relation. Formal

Relations are relations derived from intrinsic properties of the related entities. A Formal Relation

“hold between two or more entities directly without any further intervening individual”(11,

p. 236) (e.g., the Formal Relation olderThan, derived from the property age of the type Person;

instantiation (::); inherence (i) and existential dependence (ed)). Contrariwise, Material Relations

are dependent on extrinsic relationships: the relata of a Material Relation must be mediated by

individuals that are Relator Universals (11, p. 236).

In general, a Relation R can be then be formally defined by the following schema:

9ed(x,y) is defined in Definition 1.

3.2 Classifiers and Properties 44

Definition 13 (Formal and Material Relations): Let ϕ(a1, . . . ,an) denote a condition on

the individuals a1, . . . ,an. A Relation R is defined for the Universals U1, . . . ,Un iff

∀a1, . . . ,an(R(a1, . . . ,an)↔ ((∧i≤nUi(ai))∧ϕ(a1, . . . ,an)))

A Relation is a Material Relation if there is a Relator Universal UR such that the condition ϕ

is obtained from UR as follows:

ϕ(a1, . . . ,an)↔∃k(UR(k)∧∧i≤nm(k,ai))

In this case, we say that the relation R is derived from the relator universal UR, or

symbolically, derivation(R,UR). Otherwise, if such a Relator Universal UR does not exists, R is

termed a Formal Relation. �

We have then that a n-tuple (a1, . . . ,an) instantiates a Material Relation R iff there is one

relator r (instance of UR) that mediates (and is existentially dependent on) every single ai.

The derivation relationship between a Relator Universal and a Material Relation is a

specialized relationship that indicates how instances of Material Relations can be derived from

instances of mediation relations. This relation of derivation between a Material Relation and a

Relator Universal is represented in OntoUML by the symbol , in which the black

circle is connected to the Relator Universal.

In order to exemplify Relator Universals, Formal Relations, Material Relations, mediations

and derivations, let us create an OntoUML model, pictured in Fig. 13, in which we have that a

Kind Person has an “age” attribute that is a natural number represented by the Quality Dimension

Age(Year), which leads to the existence of an olderThan Formal Relation. Also, an instance

of Person can play the role of a Student when he/she is enrolled in a School by means of a

mediation relation (m) holding from an instance of the Relator Universal Enrollment to him/her.

In a similar way, a Kind Organization can play the role of a School when it provides educational

services by means of a mediation relation (m) holding from an instance of the Relator Universal

Enrollment to it. When the same instance x of Enrollment is mediating an instance y of Person

(i.e., m(x,y)) and an instance z of Organization (i.e., m(x,z)), then there is a Material Relation

study between y and z. This fact is symbolized by the derivation relation between the Material

Relation study and the Relator Universal Enrollment.

Again, by applying the framework for assessment of modeling languages proposed in 11,

pp. 28-36 and using the excerpt of UFO shown in Fig. 10, 11, p. 323 revise the excerpt of the

UML 2.0 metamodel shown in Fig. 14, creating the excerpt of the OntoUML metamodel pictured

by Fig. 15.

3.2 Classifiers and Properties 45

«kind»
Person
age: Age(Year) [1]

«role»
Student

«role»
School

«kind»
Organization

«relator»
Enrollment

«simpleDatatype»
Age(Year)

«datatypeRelationship»*
age1

«mediation»

1..*

1
«mediation»

1..*

1

«material»
study

1..* 1..*

1

1

«formal»
olderThan

*

*

Figure 13: Example of Relator Universal, Formal Relation, Material Relation, mediation and
derivation.

OntoUML profile regarding the categories depicted in Fig. 15

Stereotype: «role»

Constraints:

2. Every «role» class must be connected to an association end of a «mediation» relation.

Stereotype: «roleMixin»

Description: A «roleMixin» represents an anti-rigid and externally dependent non-sortal,

i.e., a dispersive universal that aggregates properties which are common to different roles. In

includes formal roles such as whole and part, and initiatior and responder.

Constraints:

1. Every «roleMixin» class must be connected to an association end of a «mediation» relation.

Stereotype: «mode»

3.2 Classifiers and Properties 46

Figure 14: Excerpt of the UML metamodel featuring classifiers and Properties (11, p. 321).

Description: A «mode» universal is an intrinsic moment universal. Every instance of mode

universal is existentially dependent of exactly one entity. Examples include skills, thoughts,

beliefs, intentions, symptoms, private goals.

Constraints:

1. Every «mode» must be (directly or indirectly) connected to an association end of at least

one «characterization» relation.

Stereotype: «relator»

Description: A «relator» universal is a relational moment universal. Every instance of relator

universal is existentially dependent of at least two distinct entities. Relators are the instantiation

of relational properties such as marriages, kisses, handshakes, commitments, and purchases.

Constraints:

1. Every «relator» must be (directly or indirectly) connected to an association end on at least

3.2 Classifiers and Properties 47

Figure 15: Revised fragment of the UML 2.0 metamodel according to the ontological categories
of Fig. 10 (11, p. 334).

one «mediation» relation;

2. Let R be a relator universal and let {C1. . . Cn} be a set of universals mediated by R

(related to R via a «mediation» relation). Finally, let lowerCi be the value of the minimum

cardinality constraint of the association end connected to Ci in the «mediation» relation.

Then, we have that (
n

∑
i=1

lowerCi)≥ 2.

Stereotype: «mediation»

Description: A «mediation» is a formal relation that takes place between a relator universal

and the endurant universal(s) it mediates. For example, the universal Marriage mediates the role

universals Husband and Wife, the universal Enrollment mediates Student and University, and the

universal Covalent Bond mediates the universal Atom.

Constraints:

1. An association stereotyped as «mediation» must have in its source association end a class

stereotyped as «relator» representing the corresponding relator universal (self.source.

3.2 Classifiers and Properties 48

oclIsTypeOf(Relator)=true);

2. The association end connected to the mediated universal must have the minimum

cardinality constraints of at least one (self.target.lower ≥ 1);

3. The association end connected to the mediated universal must have the property

(self.target.isReadOnly = true);

4. The association end connected to the relator universal must have the minimum cardinality

constraints of at least one (self.source.lower ≥ 1);

5. «mediation» associations are always binary associations.

Stereotype: «characterization»

Description: A «characterization» is a formal relation that takes place between a mode

universal and the endurant universal this mode universal characterizes. For example, the

universals Private Goal and Capability characterize the universal Agent.

Constraints:

1. An association stereotyped as «characterization» must have in its source association

end a class stereotyped as «mode» representing the characterizing mode universal

(self.source.oclIsTypeOf(Mode)=true);

2. The association end connected to the characterized universal must have the cardinality

constraints of one and exactly one (self.target.lower = 1 and self.target.upper = 1);

3. The association end connected to the characterizing quality universal (source association

end) must have the minimum cardinality constraints of one (self.source.lower ≥ 1);

4. The association end connected to the characterized universal must have the property

(self.target.isReadOnly = true);

5. «characterization» associations are always binary associations.

Stereotype: Derivation Relation

3.2 Classifiers and Properties 49

Description: A derivation relation represents the formal relation of derivation that takes

place between a material relation and the relator universal this material relation is derived from.

Examples include the material relation married-to, which is derived from the relator universal

Marriage, the material relation kissed-by, derived from the relator universal Kiss, and the material

relation purchases-from, derived from the relator universal Purchase.

Constraints:

1. A derivation relation must have one of its association ends connected to a relator

universal (the black circle end) and the other one connected to a material rela-

tion (self.target.oclIsTypeOf(Relator)=true, self.source.oclIsTypeOf(Material Associa-

tion)=true);

2. Derivation associations are always binary associations;

3. The black circle end of the derivation relation must have the cardinality constraints of one

and exactly one (self.target.lower = 1 and self.target.upper = 1);

4. The black circle end of the derivation relation must have the property (self.target.

isReadOnly = true);

5. The cardinality constraints of the association end connected to the material relation in a

derivation relation are a product of the cardinality constraints of the «mediation» relations

of the relator universal that this material relation derives from. This is done in the manner

shown in subsection 4.3.3. However, since «mediation» relations require a minimum

cardinality of one on both of its association ends, then the minimum cardinality on the

material relation end of a derivation relation must also be ≥ 1 (self.source.lower ≥ 1).

Stereotype: «material»

Description: A «material» association represents a material relation, i.e., a relational

universal which is induced by a relator universal. Examples include student studies in university,

patient is treated in medical unit, person is married to person.

Constraints:

1. Every «material» association must be connected to the association end of exactly one

derivation relation;

3.3 Aggregation and Composition 50

2. The cardinality constraints of the association ends of a material relation are derived from

the cardinality constraints of the «mediation» relations of the relator universal that this

material relation is derived from. This is done in the manner shown in subsection 4.3.3.

However, since «mediation» relations require a minimum cardinality of one on both of

its association ends, then the minimum cardinality constraint on each end of the derived

material relation must also be ≥ 1;

3. Every «material» association must have the property (isDerived = true).

Metaclass: Property

Description: An attribute in the UML metamodel is a property owned by a classifier.

Attributes are used in this profile to represent attribute functions derived for quality universals.

Examples are the attributes color, age, and startingDate.

Constraints:

1. A property owned by a classifier (representing an attribute of that classifier) must have the

minimum cardinality constraints of one (self.lower ≥ 1).

3.3 Aggregation and Composition

The Fig. 16 represents the UFO’s metamodel excerpt regarding Aggregation and Composition.

In this excerpt, the metaclass Entity (also present in the metamodel excerpt pictured in Fig. 10)

has a partOf relation with itself. This relation is an anti-symmetric and non-transitive relation

(i.e., transitivity holds for certain cases but not for others), because two of its subclasses are

transitive (subQuantityOf and subCollectionOf), one is intransitive (memberOf), and one is

itself non-transitive (componentOf). Also, this relation obeys the irreflexivity axiom and weak

supplementation principle (11, p. 342).

This partOf relation is of significant importance in conceptual modeling, being present in

practically all conceptual modeling languages (e.g., OPEN Modelling Language (9) (OML),

UML, Enhanced Entity-Relationship (EER)). An important aspect to be addressed by any

conceptual theory of parthood is to stipulate the different status that parts can have w.r.t. the

whole they compose. As discussed by (55), many of the issues regarding this point cannot be

clarified without considering modality.

3.3 Aggregation and Composition 51

Figure 16: UFO excerpt regarding meronymic relations (11, p. 341).

We can distinguish two types of part-whole relations based on the distinction between

the previously defined notion Existential Dependence (Definition 1) and the one of Generic

Dependence (Definition 14).

Definition 14 (generic dependence): An individual y is generically dependent
on a type T iff, whenever y exists it is necessary that an instance of T exists. This
can be formally characterized by the following formula schema: GD(y,T),
�(ε(y)→∃T,x(ε(x)))10. � (55, p. 12)

As one can observe contrasting the definitions 1 and 14, the former is a relation between two

individuals, whilst the latter is a relation between an individual and a universal.

The essential parthood relations and the inseparable ones are relations that imply existential

dependence. Contrariwise, a mandatory parthood relation is one that implies generic dependence

from the part to the whole (mandatory whole) or from the whole to the part (mandatory part).

These types of parthood are defined in the sequel:

Definition 15 (essential part): An individual x is an essential part of another
individual y iff, y is existentially dependent on x and x is, necessarily, a

10This definition is formalized in a language of modal logics defined in 11 and in which all quantification is
restricted by Sortals (11, pp. 121-122), so ∃T,x(A) means that there is a x, taken from a set of instances of a
SortalUniversal T, that satisfies A.

3.3 Aggregation and Composition 52

part of y: EP(x,y) , ed(y,x)∧�(x ≤ y). This is equivalent to stating that
EP(x,y) , �((ε(y) → ε(x)) ∧ (x ≤ y)). We adopt here the mereological
continuism defended by 58, which states that the part-whole relation should
only be considered to hold among existents, i.e., ∀x,y((x≤ y)→ (ε(x)∧ε(y))).
As a consequence, we can have this definition in its final simplification:
EP(x,y),�(ε(y)→ (x≤ y)). �(55, p. 11)
Definition 16 (inseparable part): An individual x is an inseparable part of
another individual y iff, x is existentially dependent on y, and x is, necessarily, a
part of y: IP(x,y),�(ε(x)→ (x≤ y)). � (55, p. 14)
Definition 17 (mandatory part): An individual x is a mandatory part of another
individual y iff, y is generically dependent of a type T that x instantiates, and
y has, necessarily, as a part an instance of T: MP(T,y),�(ε(y)→∃T,x(x <
y)). � (55, p. 12)
Definition 18 (mandatory whole): An individual y is a mandatory whole
for another individual x iff, x is generically dependent on a type T that
y instantiates, and x is, necessarily, part of an individual instantiating T:
MW (T,x),�(ε(x)→∃T,y(x < y)). � (55, p. 14)

Also, 11, p. 286 and 55, p. 17 suggest that when the whole is anti-rigid, we shall call the

part immutable instead of essential. As every essential part is also immutable (11, p. 286)(55,

pp. 17-18), then essential part is a specialization of immutable part. While immutable parts hold

for rigid, semi-rigid or anti-rigid wholes, essential parts are maintained only between a part and

a rigid whole.

Therefore, regarding modality, the parthood relations can be divided into two non-disjoint

groups:

i The relations between individuals, such as relations that are essential (Definition 15),

inseparable (Definition 16) or immutable;

ii The relations between types, such as relations that are mandatory regarding the part

(Definition 17) or mandatory regarding the whole (Definition 18)

Furthermore, the part-whole relationships can also be divided into four disjoint groups,

regarding the types of its domains: (i) componentOf relationships; (ii) subQuantityOf

relationships; (iii) subCollectionOf relationships; and (iv) memberOf relationships. In the

sequel, we will describe each type.

The metaclasses Quantity and Collective are the same metaclasses shown in Fig. 7 and

explained in section 3.1. The metaclass Complex represents the functional complexes, which are

instances that are composed by parts that play a multitude of roles in the context of the whole,

differently from instances of Collectives (11, p. 187).

The componentOf parthood relation is a relation between two functional complexes.

3.3 Aggregation and Composition 53

“Examples include: (a) my hand is part of my arm; (b) a car engine is part of a car; (c)

an Arithmetic and Logic Unit (ALU) is part of a CPU; (d) a heart is part of a circulatory system.”

(11, p. 350). ComponentOf relations are non-reflexive anti-symmetric non-transitive parthood

relations, which obey the weak supplementation principle (11, p. 350).

The subQuantityOf parthood relation is a relation between two Quantities. “Examples

include: (a) alcohol is part of Wine; (b) Plasma is part of Blood; (c) Sugar is part of Ice Cream;

(d) Milk is part of Cappuccino.” (11, p. 350). SubQuantityOf relations are essential (see

Definition 15) non-shareable (see Definition 20) non-reflexive anti-symmetric transitive parthood

relations, which obey the strong supplementation principle11 and the extensionality principle12

(11, p. 350).

The subCollectionOf parthood relation is a relation between two Collectives. “Like

quantities, collectives are maximal entities. However, in contrast with quantities, the unifying

relation of a collective is not necessarily one of physical connection. For this reason, a collective

can be shared by two or more collectives.” (11, p. 346) “Examples include: (a) the north part of

the Black Forest is part of the Black Forest; (b) The collection of Jokers in a deck of cards is part

of that deck of cards; (c) the collection of forks in cutlery set is part of that cutlery set; (d) the

collection of male individuals in a crowd is part of that crowd.” (11, p. 351). SubCollectionOf

relations are non-reflexive anti-symmetric transitive parthood relations, which obey the weak

supplementation principle (11, p. 351).

The memberOf parthood relation is a relation between a singular functional complex or a

Collective (as a part) and a Collective (as a whole). “Examples include: (a) a tree is part of

forest; (b) a card is part of a deck of cards; (c) a fork is part of cutlery set; (d) a club member is

part of a club.” (11, p. 352). MemberOf relations are non-reflexive anti-symmetric intransitive

parthood relations, which obey the weak supplementation principle (11, p. 352).

Moreover, all parthood relations can be characterized regarding their shareability. 13, p. 39

is intentionally vague when stating that:

“Precise semantics of shared aggregation varies by application area and modeler.
The order and way in which part instances are created is not defined.” (13,
p. 39)

From 11, p. 162, we have definitions for non-shareable (exclusive) parts (see Definition 19)

11In simple words, the strong supplementation principle states that if an individual y is not a part of another
individual x then there is a part of y that does not overlap with x (11, p. 146).

12In a nutshell, the extensionality principle states that two objects are identical iff they have the same (proper)
parts. This is the mereological counterpart of the extensionality principle in set theory, which states that two sets are
identical iff they have the same members (11, p. 147).

3.3 Aggregation and Composition 54

and for general exclusive part-whole relations (see Definition 20).

Definition 19 (exclusive part): An individual x of type A is said to be an
exclusive (proper) part of another individual y of type B (symbolized as <X
(x,A,y,B)) iff y is the only B that has x as part.
<X(x,A,y,B), (x :: A)∧ (y :: B)∧ (x < y)∧ (∀z (z :: B) (x < z)→ (y = z)) �
(11, p. 162)
Definition 20 (general exclusive part-whole relation): A universal A is
related to a universal B by a relation of general exclusive parthood (symbolized
as A <GX B) iff every instance x of A has an exclusive part of type B.
A <GX B, ∀x (x :: A)→∃y (y :: B)∧<X(x,A,y,B)
or simply,
A <GX B, ∀x (x :: A)→∃!y (y :: B)∧ (x < y) � (11, p. 162)

Finally, by applying the framework for assessment of modeling languages proposed in 11,

pp. 28-36 and using the excerpt of UFO shown in Fig. 16, 11, p. 341 revise the excerpt of the

UML 2.0 metamodel shown in Fig. 14, creating the excerpt of the OntoUML metamodel pictured

by Fig. 17.

Figure 17: Revised fragment of the UML 2.0 metamodel according to the ontological categories
of Fig. 16 (11, p. 348).

OntoUML profile regarding the categories depicted in Fig. 17

3.3 Aggregation and Composition 55

Metaclass: Meronymic

Description: Abstract metaclass representing the general properties of all meronymic

relations. Meronymic has no concrete syntax. Thus, symbolic representations are defined

by each of its concrete subclasses.

Constraints:

1. Weak supplementation: Let U be a universal whose instances are wholes and let {C1. . . Cn}

be a set of universals related to U via aggregation relations. Let lowerCi be the value of the

minimum cardinality constraint of the association end connected to Ci in the aggregation

relation. Then, we have that (
n

∑
i=1

lowerCi)≥ 2;

2. Essential Parthood: The isEssential attribute represents whether the meronymic relation

is one of essential parthood, i.e., whether the part is essential to the whole. In case the

classifier connected to the association end representing the whole is an anti-rigid classifier,

then the meta-attribute isEssential must be false, whereas the meta-attribute isImmutable

may be true. However, if isEssential is true (in case of a rigid classifier with essential parts)

then isImmutable must also be true. The concrete representation of this meta-property is

via the tagged value essential decorating the association;

3. Inseparable Parthood: The isInseparable attribute represents whether the meronymic

relation is one of inseparable parthood, i.e., whether the whole is essential to the part.

The concrete representation of this meta-property is via the tagged value {inseparable}

decorating the association;

4. Shareable Parthood: The isShareable attribute represents whether the meronymic relation

is (locally) shareable, i.e., whether the part can be related to more than a whole of that

kind. The concrete representation of this meta-property is via the color property of the

symbol used to depict this relation (a diamond with or without a decorating letter): if

(isShareable = true) then the symbol is shown in white color, otherwise, it is shown in

black.

Metaclass: componentOf

3.3 Aggregation and Composition 56

Description: componentOf is a parthood relation between two complexes. Examples include:

(a) my hand is part of my arm; (b) a car engine is part of a car; (c) an ALU is part of a CPU; (d)

a heart is part of a circulatory system.

Meta-properties: Non-reflexivity, Anti-Symmetry, Non-Transitivity and Weak Supplementa-

tion.

Constraints:

1. The classes connected to both association ends of this relation must represent universals

whose instances are functional complexes. A universal X is a universal whose instances are

functional complexes if it satisfies the following conditions: (i) If X is a sortal universal,

then it must be either stereotyped as «kind» or be a subtype of a class stereotyped as

«kind»; (ii) Otherwise, if X is a mixin universal, then for all classes Y such that Y is a

subtype of X, we have that Y cannot be either stereotyped as «quantity» or «collective»,

and Y cannot be a subtype of class stereotyped as either «quantity» or «collective».

Metaclass: subQuantityOf

Description: subQuantityOf is a parthood relation between two quantities. Examples include:

(a) alcohol is part of Wine; (b) Plasma is part of Blood; (c) Sugar is part of Ice Cream; (d) Milk

is part of Cappuccino.

Meta-properties: Non-reflexivity, Anti-Symmetry, Transitivity and Strong Supplementation

(Extensional Mereology).

Constraints:

1. This relation is always non-shareable (isShareable = false);

2. All entities stereotyped as «quantity» are extensional individuals and, thus, all parthood

relations involving quantities are essential parthood relations;

3. The maximum cardinality constraint in the association end connected to the part must be

one (self.target.upper = 1);

3.3 Aggregation and Composition 57

4. The classes connected to both association ends of this relation must represent universals

whose instances are quantities. A universal X is a universal whose instances are quantities

if it satisfies the following conditions: (i) If X is a sortal universal, then it must be

either stereotyped as «quantity» or be a subtype of a class stereotyped as «quantity»; (ii)

Otherwise, if X is a mixin universal, then for all classes Y such that Y is a subtype of X,

we have that Y cannot be either stereotyped as «kind» or «collective», and Y cannot be a

subtype of class stereotyped as either «kind» or «collective».

Metaclass: subCollectionOf

Description: subCollectionOf is a parthood relation between two collectives. Examples

include: (a) the north part of the Black Forest is part of the Black Forest; (b) The collection of

Jokers in a deck of cards is part of that deck of cards; (c) the collection of forks in cutlery set is

part of that cutlery set; (d) the collection of male individuals in a crowd is part of that crowd.

Meta-properties: Non-reflexivity, Anti-Symmetry, Transitivity and Weak Supplementation

(Minimum Mereology).

Constraints:

1. The classes connected to both association ends of this relation must represent universals

whose instances are collectives. A universal X is a universal whose instances are collectives

if it satisfies the following conditions: (i) If X is a sortal universal, then it must be either

stereotyped as «collective» or be a subtype of a class stereotyped as «collective»; (ii)

Otherwise, if X is a mixin universal, then for all classes Y such that Y is a subtype of X,

we have that Y cannot be either stereotyped as «kind» or «quantity», and Y cannot be a

subtype of class stereotyped as either «kind» or «quantity»;

2. The maximum cardinality constraint in the association end connected to the part must be

one (self.target.upper = 1).

Metaclass: memberOf

Description: memberOf is a parthood relation between a complex or a collective (as a part)

and a collective (as a whole). Examples include: (a) a tree is part of forest; (b) a card is part of a

3.3 Aggregation and Composition 58

deck of cards; (c) a fork is part of cutlery set; (d) a club member is part of a club.

Meta-properties: Non-reflexivity, Anti-Symmetry, Intransitivity and Weak Supplementation.

Although transitivity does not hold across two memberOf relations, a memberOf relation followed

by subCollectionOf is transitive. That is, for all a,b,c, if memberOf(a,b) and memberOf(b,c) then

¬memberOf(a,c), but if memberOf(a,b) and subCollectionOf(b,c) then memberOf(a,c).

Constraints:

1. This relation can only represent essential parthood (isEssential = true) if the object

representing the whole on this relation is an extensional (isExtensional = true) individual.

In this case, all parthood relations in which this individual participates as a whole are

essential parthood relations;

2. The classifier connected to association end relative to the whole individual must be a

universal whose instances are collectives. The classifier connected to the association end

relative to the part can be either a universal whose instances are collectives, or a universal

whose instances are functional complexes.

59

4 A Tool for Building and Verifying
OntoUML Models

In this chapter, we present an Eclipse-based graphical editor, which aims at fulfilling the

absence of tool supporting for the OntoUML language. By representing UFO’s categories and

axiomatization in the language metamodel, the complexity of these foundational issues is hidden

from the user while still constraining him to produce ontologically sound models.

In the following sections, we present the implementation of the OntoUML abstract syntax,

syntactical constraints and concrete syntax proposed in 11 by using MDA technologies, in

particular, the Ecore (23) and OCL languages for the abstract syntax, the OCL for the syntactical

constraints, and the GMF Eclipse plug-in for the concrete syntax. Moreover, we also present the

description of the whole set of metamodel transformations that leads to the implementation of

the graphical editor.

This chapter is structured in the following way: Section 4.1 introduces the architecture of

the graphical editor. Section 4.2 shows the Ecore metamodel that we created from the three

fragments of the OntoUML metamodel pictured in Figs. 9, 15 and 17 in order to define the

abstract syntax of the OntoUML language by using the Eclipse Modeling Framework1 (3) (EMF)

plug-in. Section 4.3 shows the implementation of the OntoUML syntactical constraints (or

well-formedness rules) taken from 11, pp. 317–320, 334–338, 348–352 as OCL expressions.

The section 4.4 shows the definition of the OntoUML concrete syntax (as specified in 11, pp.

317–320, 334–338, 348–352) by using the Graphical Modeling Framework2 (GMF) plug-in. In

the section 4.5, we show the set of transformations from the Ecore metamodel (embedded with

OCL constraints), which leads to the creation of the Java code that implements the OntoUML

graphical editor. In the section 4.6, we build a case study by means of a running example in

order to show the capabilities of the editor. Finally, in section 4.7 we pose our conclusions for

this chapter.

1http://www.eclipse.org/modeling/emf.
2http://www.eclipse.org/modeling/gmf.

4.1 Architecture 60

4.1 Architecture

The architecture of the editor presented here is pictured in Fig. 18. This architecture has

been conceived to follow a model-driven approach. In particular, we adopt the OMG MOF

metamodeling architecture.

We define a metamodel (also called abstract syntax) for a language L as a conjuntion of (i)

a taxonomy of L’s concepts and (ii) a set of L’s syntactic constraints, as shown in Fig. 18. In

order to write the OntoUML Taxonomy, we use a MOF compliant language named Ecore. In

Fig. 18, we represent the codification of the OntoUML Taxonomy in Ecore as the class Domain

Model. Aside from Ecore, we also use the language OCL in the formalization of the OntoUML

Metamodel. We use OCL expressions mainly to: (i) define how derived associations get their

values; (ii) define how some meta-attributes get their initial values when belonging to instances

of specific metaclasses (details are given in subsection 4.3.3); (iii) specify query operations and

specify invariants, i.e., integrity constraints that determine a condition that must be true in all

consistent system states. Observe that (i) relates to the OntoUML Taxonomy and is specified

within the Domain Model in Fig. 18, while (ii) and (iii) relate to the Set of OntoUML Syntactic

Constraints and are specified within the classes OCL Expression for the Automatic Initialization

of Meta-Attributes and OCL Invariant, respectively, which are part of the class Mapping Model.

Figure 18: The architecture of the editor.

In terms of implementation technology, the editor is implemented by using a number of

plug-ins that supports graphical editor development in the context of the Eclipse IDE. For the

creation of the OntoUML Taxonomy in Ecore (the Domain Model), we have used EMF. The

4.2 Definition of the OntoUML Abstract Syntax in Ecore 61

EMF together with MDT allows for the creation and verification of Ecore models which have

embedded OCL expressions.

We also define a concrete syntax for a language L as a conjuntion of (i) a taxonomy of L’s

concepts; (ii) a set of L’s graphical constructs, i.e., a set of the visual elements allowed by L;

and (iii) a mapping between L’s taxonomy and L’s graphical constructs; as shown in Fig. 18.

In order to encode the OntoUML Concrete Syntax and to build the graphical interface of the

editor, we have used EMF and GMF. The GMF provides a high-level description of visual

representations to support transformation to a set of Java classes for the graphical editor using a

Model-View-Controller (MVC) architecture. In Fig. 18 we illustrate some important artifacts

that we created by means of the GMF plug-in: (i) the Graphical Definition specifies the Set of

OntoUML Graphical Constructs; (ii) the Tooling Definition specifies a structure for the editor’s

toolbar; and (iii) the Mapping Model specifies the OntoUML Taxonomy-Graphical Mapping as

well as a mapping between the OntoUML Taxonomy (as specified in the Domain Model), the

Set of OntoUML Graphical Constructs (as specified in the Graphical Definition) and the toolbar

specification (as specified in the Tooling Definition). Also, the Mapping Model contains the

OCL Expressions for the Automatic Initialization of Meta-Attributes and, in order to make use

of the GMF verification framework, this artifact is where the OCL Invariants that implement the

Set of OntoUML Syntactic Constraints are defined.

Moreover, the Domain Model is concretely represented as a *.ecore file, the Graphical

Definition as a *.gmfgraph file, the Tooling Definition as a *.gmftool file and the Mapping Model

as a *.gmfmap file.

Finally, the Domain Model and the Mapping Model are sufficient (but not necessary3)

for defining together the OntoUML Abstract Syntax; and the Domain Model, the Mapping

Model and the Graphical Definition are sufficient (but not necessary4) for defining together the

OntoUML Concrete Syntax.

4.2 Definition of the OntoUML Abstract Syntax in Ecore

In order to be able to use the EMF plug-in to transform the abstract syntax (or metamodel) of

OntoUML to a set of Java classes that can hold a model in a MVC architecture, we define the

OntoUML’s metamodel in a language named Ecore.

3Because the Mapping Model contains more than the OCL Invariants.
4Because the Mapping Model contains more than the OntoUML Taxonomy-Graphical Mapping specification

and also relates to the Tooling Definition.

4.2 Definition of the OntoUML Abstract Syntax in Ecore 62

So, we use here the EMF plug-in to create an Ecore metamodel for OntoUML by unifying

the three fragments of the OntoUML metamodel pictured in Figs. 9, 15 and 17 in the metamodel

pictured in Fig. 195.

Additionaly, as the meta-attribute isImmutable of the metaclass Meronymic is defined only

for parts in 11, p. 286 and 55, pp. 17-18, we modified the OntoUML metamodel in order to

create a related meta-attribute regarding the immutability of wholes by replacing the meta-

attribute isImmutable by the meta-attribute isImmutablePart and creating a new meta-attribute

isImmutableWhole in the metaclass Meronymic. See Definitions 25 and 30 for isImmutablePart

and isImmutableWhole, respectively.

We also create OCL expressions in order to indicate how the derived meta-attributes and

meta-relations of the OntoUML metamodel get their values. For example, the derived meta-

attribute “general” of the metaclass “Classifier” is the transitive closure of the generalization

relation regarding the specialized class. In OCL, “general” can be defined as:

Listing 3: Derivation of the meta-attribute “general” of metaclass “Classifier”.

1 context Classifier :: general:Bag(Classifier)

2 derive: self.allSuperTypes ()

3 context Element :: allSuperTypes ():Bag(Element)

4 body: if self.oclIsKindOf(Classifier) then (if self.

oclAsType(Classifier).generalization ->forAll(x | x.

oclIsUndefined ()) then Set{} else Set{self.oclAsType(

Classifier).generalization ->collect(x | x.general),

self.oclAsType(Classifier).generalization ->collect(x |

if x.general.oclIsKindOf(Classifier) then x.general.

allSuperTypes () else Set{} endif)}->flatten () endif)

else Set{} endif

The derived meta-relation “relatedElement” of metaclass “Relationship” is the set of

all the entities that are related by a relation, independently if it is an Association or a

DirectedRelationship. This meta-relation can be defined in OCL as:

Listing 4: Derivation of the meta-relation “relatedElement” of metaclass “Relationship”.

1 context Relationship :: relatedElement:Bag(Element)

2 derive: if self.oclIsKindOf(Association) then self.

oclAsType(Association).associationEnd else if self.

5Besides containing these fragments, this metamodel contains some auxiliary attributes and relationships (which
contains an “aux” in their names) created due to GMF requirements.

4.2 Definition of the OntoUML Abstract Syntax in Ecore 63

Fi
gu

re
19

:T
he

E
co

re
O

nt
oU

M
L

m
et

am
od

el
.

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 64

oclIsKindOf(DirectedRelationship) then Set{self.

oclAsType(DirectedRelationship).source , self.oclAsType(

DirectedRelationship).target}->flatten () else null

endif endif

The OCL expressions that we use to derive the complete set of derived meta-relations of the

OntoUML metamodel are shown in sections A.3 and A.4 of appendix A.

4.3 Mapping the OntoUML Syntactical Constraints into
OCL Expressions

All the syntactical constraints of the OntoUML language are defined as OCL expressions in order

to make use of the verification framework provided by the GMF Eclipse plug-in. Therefore, in

subsection 4.3.1 we show, in general terms, how we map these constraints to OCL, in subsection

4.3.2 we show some additional invariants that we create and which are not defined in the

OntoUML profile (11), and subsection 4.3.3 deals with the editor’s capability of automatically

initializing or modifying some meta-attributes’ values.

4.3.1 Mapping the Original OntoUML Invariants into OCL Expressions

In general, there are two types of syntactical constraints regarding the way in which they are

verified:

• constraints that prevents the user from performing modeling actions that would put the

model into an inconsistent state in which the only possible fix would be to undo the original

modeling action. These constraints are feasible to be automatically verified whenever the

user tries to update a model, and are classified as live validation by the GMF verification

framework. In order to avoid misunderstandings, we will classify them as live verification

instead;

• constraints that prevents the user from leaving the model into an incomplete state in its

final version, i.e. leaving the final version of the model in a state in which there are possible

ways to fix it rather then undoing previous actions. These constraints are not feasible to be

automatically verified whenever the user tries to update a model, because a modeling action

may put the model in an incomplete state in which further modeling actions are required

in order to the model be considered syntactically correct. Therefore, these constraints have

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 65

to be manually verified after the user deems suitable and are classified as batch validation

by the GMF verification framework. In order to avoid misunderstandings, we will classify

them as batch verification instead.

In order to create a constraint in GMF, we have to specify the metaclass that will be the

context of the constraint. In an OntoUML model, when you change a class or relationship x that

is instance of a metaclass X, only the live constraints that have X as context will be verified.

This is a limitation of the GMF verification framework that we have to take in consideration

when writing live constraints. For this reason, the choice of the context metaclass and the OCL

expression that encodes some OntoUML syntactical constraints may appear non-intuitive.

Furthermore, the OntoUML syntactical constraints that are live can be categorized in the

following types:

• Constraints about which types of classifiers can be in the general collection of a determined

Classifier, e.g., no RigidSortal can have an AntiRigidSortal in its general collection. This

constraint can be modeled in OCL as:

1 context Generalization

2 inv SubstanceSortalConstraint3: if self.specific.

oclIsKindOf(SubstanceSortal) then not (self.general

.oclIsKindOf(AntiRigidSortalClass) or self.general.

oclIsKindOf(RoleMixin)) else true endif

• Constraints about how many classifiers of a specific type can be in the general collection

of a determined Classifier, e.g., no Classifier may have more than one SubstanceSortal in

its general collection. We can model this constraint in OCL as:

1 context Generalization

2 inv SubstanceSortalConstraint2a: self.specific.

allSubTypes ()->including(self.specific)->forAll(x |

x.allSuperTypes ()->select(y | y.oclIsKindOf(

SubstanceSortal))->size() <= 1)

3 context Element :: allSuperTypes ():Bag(Element)

4 body: if self.oclIsKindOf(Classifier) then (if self.

oclAsType(Classifier).generalization ->forAll(x | x.

oclIsUndefined ()) then Set{} else Set{self.

oclAsType(Classifier).generalization ->collect(x | x

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 66

.general), self.oclAsType(Classifier).

generalization ->collect(x | if x.general.

oclIsKindOf(Classifier) then x.general.

allSuperTypes () else Set{} endif)}->flatten () endif

) else Set{} endif

5 context Element :: allSubTypes ():Bag(Element)

6 body: let generalizations : Set(Generalization) =

Generalization.allInstances ()->select(x | x.general

= self) in (if self.oclIsKindOf(Classifier) then (

if generalizations ->forAll(y | y.oclIsUndefined ())

then Set{} else Set{generalizations ->collect(y | y.

specific), generalizations ->collect(y | if y.

specific.oclIsKindOf(Classifier) then y.specific.

allSubTypes () else Set{} endif)}->flatten () endif)

else Set{} endif)

• Constraints on the unchangeability of some values of determined meta-attributes of specific

Classifiers. As the values of these meta-attributes are always initialized with the correct

value, their unchangeability can be verified in live mode. An example is the unchangeability

of the value “true” in the meta-attribute isAbstract of the MixinClasses. In OCL, this

constraint can be modeled as:

1 context MixinClass

2 inv MixinClassConstraint2: self.isAbstract = true

• Constraints on the types of Classifiers that can be in the extremities of specific OntoUML

relationships, e.g., a Characterization relationship must have an instance of Mode in its

source extremity. This constraint can be modeled in OCL as:

1 context Characterization

2 inv CharacterizationConstraint1: self.source ->forAll(x

| if x.oclIsKindOf(Property) then x.oclAsType(

Property).endType.oclIsTypeOf(Mode) else false

endif)

• Constraints on the cardinalities of specific types of OntoUML relationships that are

initialized with suitable values, e.g., for the Characterization relationships, the association

end connected to the characterized universal must have the cardinality constraints of

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 67

one and exactly one; and the constraints on the values of the cardinalities of Material

Associations and Derivation relationships. As these cardinalities are automatically

calculated in the moment of the creation of the relations, we have to prohibit the user from

entering inconsistent values. We can model the first example in OCL as:

1 context Property

2 inv CharacterizationConstraint2: if self.target.

oclIsKindOf(Characterization) then ((self.lower =

1) and (self.upper = 1)) else true endif

• Constraints on the type of numbers that can appear as cardinality values. For example, the

cardinalities must be cardinal numbers. More specifically, they must be natural numbers

(N) or the least cardinal infinite ℵ0, which is represented as *6. In OCL, this constraint

can be modeled as:

1 context MultiplicityElement

2 inv MultiplicityElementConstraint1: (self.lower >= 0)

or (self.lower = -1)

3 context MultiplicityElement

4 inv MultiplicityElementConstraint2: (self.upper >= 0)

or (self.upper = -1)

The OntoUML syntactical constraints that are batch can be categorized in the following

types:

• Constraints about the existence of Classifiers that must be in the general collection of

a determined Classifier, e.g., every non-abstract (isAbstract=false) non-SubstanceSortal

must have a SubstanceSortal as its supertype. We can model this constraint in OCL as:

1 context ObjectClass

2 inv SubstanceSortalConstraint1: if ((self.isAbstract =

false) and not self.oclIsKindOf(SubstanceSortal))

then self.allSuperTypes ()->exists(x | x.oclIsKindOf

(SubstanceSortal)) else true endif

• Constraints about the existence of covering and disjoint GeneralizationSets relating the

Phases of a Sortal, because the Phases must partition a Sortal. This constraint can be

modeled in OCL as:
6In order to get * cardinalities, one shall enter the number −1.

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 68

1 context Phase

2 inv PhaseConstraint2: let general_substance_sortal :

SubstanceSortal = Generalization.allInstances ()->

select(x | (x.specific = self) and (x.general.

oclIsKindOf(SubstanceSortal)))->collect(x | x.

general.oclAsType(SubstanceSortal))->any(true) in (

let phase_generalizations : Set(Generalization) =

Generalization.allInstances ()->select(x | (x.

general = general_substance_sortal) and (x.specific

.oclIsKindOf(Phase))) in (let

phase_generalization_sets : Set(GeneralizationSet)

= GeneralizationSet.allInstances ()->select(x | x.

generalization ->includesAll(phase_generalizations))

in (if (general_substance_sortal.oclIsUndefined ()

or (phase_generalizations ->size() = 1)) then true

else ((phase_generalization_sets ->size() = 1) and (

phase_generalization_sets ->forAll(x | (x.isCovering

= true) and (x.isDisjoint = true)))) endif)))

• Constraints about the relational dependence (see Definition 22), e.g., the relational

dependence of (i) Roles, RoleMixins and Relators with Mediations relationships; (ii)

Modes with Characterizations relationships; and (iii) the Material Associations with

Derivation relationships. We can model the constraint regarding Roles in OCL as:

1 context Role

2 inv RoleConstraint2: Mediation.allInstances ()->exists(

x | x.target ->exists(y | if y.oclIsKindOf(Property)

then ((y.oclAsType(Property).endType = self) or (

self.allSuperTypes ()->includes(y.oclAsType(Property

).endType))) else false endif))

3 context Element :: allSuperTypes ():Bag(Element)

4 body: if self.oclIsKindOf(Classifier) then (if self.

oclAsType(Classifier).generalization ->forAll(x | x.

oclIsUndefined ()) then Set{} else Set{self.

oclAsType(Classifier).generalization ->collect(x | x

.general), self.oclAsType(Classifier).

generalization ->collect(x | if x.general.

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 69

oclIsKindOf(Classifier) then x.general.

allSuperTypes () else Set{} endif)}->flatten () endif

) else Set{} endif

• Constraints on the cardinalities of specific types of OntoUML relationships, which can be

set by the modeler but must obey certain rules, like the Weak Supplementation Axiom,

which, in simple words, states that a whole must have at least two disjoint parts. In OCL,

this constraint can be modeled as:

1 context Meronymic

2 inv MeronymicConstraint1: Meronymic.allInstances ()->

select(x | x.source ->exists(y | if y.oclIsKindOf(

Property) then (self.source ->exists(z | if z.

oclIsKindOf(Property) then (z.oclAsType(Property).

endType = y.oclAsType(Property).endType) else false

endif)) else false endif))->collect(w | w.target ->

collect(k | if k.oclIsKindOf(Property) then (if (k.

oclAsType(Property).lower = -1) then 2 else k.

oclAsType(Property).lower endif) else 0 endif)->sum

())->sum() >= 2

Subsection 4.3.3 will extend the categories of live and batch constraints when explaining the

automatic initialization or modification of meta-attributes which values are constrained by the

values of other meta-attributes.

The whole set of OCL expressions that we use to define these syntactical constraints is

shown in sections A.1 and A.3 of appendix A.

4.3.2 Some Additional Invariants for OntoUML

This subsection documents a set of OCL invariants that are not related to the OntoUML

syntactical constraints as documented in the OntoUML profile (11, pp. 317–320, 334–338,

348–352). We create these invariants and formalize them in OCL (see sections A.2 and A.3 of

appendix A for the OCL formalization) as part of the OntoUML syntactical constraints because

we think they are important in the specification of OntoUML models.

Some of these invariants were not specified in the OntoUML profile because they are similar

to invariants taken from the UML metamodel. For example, the invariants that state that the

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 70

interval specified by the minimum and maximum cardinalities must be a non-empty (possibly

infinite) set of natural numbers (i.e., the minimum cardinality must be less or equal than the

maximum cardinality) are present in the UML metamodel (13, p. 95, constraint 2). As, we

implemented the OntoUML metamodel from scratch, we have to specify these UML invariants

in OCL.

Additional Invariants

• In all association ends of the associations stereotyped as «formal» or «material», the

maximum cardinality constraint (the property upper) must be equal or greater to the lower

cardinality constraint (the property lower);

• A relationship stereotyped as «datatypeRelationship» must have in its target association

end a class stereotyped as «simpleDatatype» or «structuredDatatype», because attributes

represent attribute functions derived for quality universals;

• A relationship stereotyped as «datatypeRelationship» must have in its source association

end an instance of Classifier, excepting instances of «simpleDatatype», because a

«simpleDatatype» is a Datatype that has no attributes. Excepting for Generalizations,

GeneralizationSets and Properties, all the other OntoUML constructs are Classifiers;

• Every relationship stereotyped as «datatypeRelationship» that have a «structuredDatatype»

in its source association end must have the meta-attribute isReadOnly = true in its target

association end. This constraint came from (13, p. 61), which basically states that an

instance of a «structuredDatatype» cannot change its attributes without ceasing to be the

same instance:

“All copies of an instance of a data type and any instances of that
data type with the same value are considered to be the same instance.
Instances of a data type that have attributes (i.e., is a structured data type)
are considered to be the same if the structure is the same and the values
of the corresponding attributes are the same. If a data type has attributes,
then instances of that data type will contain attribute values matching the
attributes.”. (13, p. 61)

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 71

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its source

extremity connected to only one element;

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its target

extremity connected to only one element;

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its source

extremity connected to a Property;

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its target

extremity connected to a Property;

• In the source of the relationships stereotyped «characterization», «mediation», «compo-

nentOf», «memberOf», «subCollectionOf», «subQuantityOf» or a derivation relation, the

maximum cardinality constraint (the property upper) must be equal or greater to the lower

cardinality constraint (the property lower);

• In the target of the relationships stereotyped «characterization», «mediation», «compo-

nentOf», «memberOf», «subCollectionOf», «subQuantityOf» or a derivation relation, the

maximum cardinality constraint (the property upper) must be equal or greater to the lower

cardinality constraint (the property lower);

• A generalization must have its source extremity connected to at maximum one element;

• A generalization must have its target extremity connected to at maximum one element;

• An association stereotyped as «material» must be connected to Properties which have its

meta-attributes isDerived = true;

• The maximum cardinalities of an association stereotyped as «material» are calculated

automatically;

• The cardinalities on the source extremity of a derivation relationship are calculated

automatically.

• There cannot be two «mediation» relationships x and y having the same ground, i.e.,

domain(x) = domain(y) and codomain(x) = codomain(y);

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 72

• In a relationship stereotyped as «componentOf», «memberOf», «subCollectionOf» or

«subQuantityOf» (i.e., a Meronymic relationship), if the meta-attribute isImmutablePart

= true, then the Properties connected on its target association ends must have the meta-

attribute isReadOnly = true;

• In a relationship stereotyped as «componentOf», «memberOf», «subCollectionOf» or

«subQuantityOf» (i.e., a Meronymic relationship), if the meta-attribute isInseparable

= true (in case of an anti-rigid class with inseparable parts), then the meta-attribute

isImmutableWhole must also be true;

• In a relationship stereotyped as «componentOf», «memberOf», «subCollectionOf» or

«subQuantityOf» (i.e., a Meronymic relationship), if the meta-attribute isImmutableWhole

= true, then the Properties connected on its source association ends must have the meta-

attribute isReadOnly = true;

• Non-shareability implies a cardinality of exactly one in the extremity connected to the

whole (see Definition 20);

• The minimum cardinality constraint (the meta-attribute lower) must be a natural number

(N) or the least cardinal infinite ℵ0, which is represented as *;

• The maximum cardinality constraint (the meta-attribute upper) must be a natural number

(N) or the least cardinal infinite ℵ0, which is represented as *;

• A class stereotyped as «structuredDatatype» must have at least two disjoint attributes (a

class can have attributes by means of relationships stereotyped as «datatypeRelationship»);

• A relationship stereotyped as «subQuantityOf» must have the meta-attribute isIm-

mutablePart = true, because these relationships are always essential (i.e., the meta-attribute

isEssential = true);

• In a relationship stereotyped as «subQuantityOf», the Properties related to the parts must

have the meta-attribute isReadOnly = true, because these parts are always immutable (i.e.,

the meta-attribute isImmutablePart = true).

The whole set of OCL expressions that we use to define those invariants is shown in sections

A.2 and A.3 of appendix A.

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 73

4.3.3 Automatic Initialization or Modification of Meta-Attributes’ Values

In this subsection, we present the meta-attributes which values can be automatically initialized

or modified by the OntoUML Editor. We will classify these meta-attributes into two overlapping

categories:

1. The ones for which there are invariants constraining them to have specific values as long

as their owners exist. For example, the second syntactical constraint for the metaclass

MixinClass, shown in page 39 and formalized in OCL in Listing 27, states that for

Categories, Mixins and RoleMixins, the meta-attribute isAbstract must have the value

“true”. For every meta-attribute belonging to this category, if the user has to set its value to

the correct one (i.e., the value that is syntactically correct) by hand, the related constraint

must be a batch one. However, if its value is automatically set to the correct one by the

editor, in the creation of its owner class or relation, the related constraint can be a live one,

disallowing the user to change the value of the meta-attribute.

2. The ones for which there are invariants constraining them to have specific values as long

as other determined meta-attributes are set to other specific values. In other words, a

meta-attribute a of a metaclass X is in this category if there is another meta-attribute b

of a metaclass Y, some values v1 and v2, and an invariant constraining an instance x of

X to have the value v1 in a as long as a determined instance y of Y has the value v2 in b

(possibly, X = Y, a = b, v1 = v2 or x = y). For example, the second syntactical constraint

for the metaclass Collective, shown in page 37 and formalized in OCL in Listing 21, states

that when a Collective C has the value “true” in its meta-attribute isExtensional, for all

Meronymic relationships R that have C as the whole, R’s meta-attribute isEssential must

have the value “true”. Again, in an instance x of X, if the user has to set a’s value to v1 by

hand when he sets b’s value to v2 in y, the related constraint must be a batch one. However,

if the editor automatically modify a’s value to v1 in x when the user sets b’s value to v2 in y

and X 6= Y, then the related constraint can be a live one, disallowing the user to change a’s

value in x to an incorrect one as long as b’s value in y is set to v2. Otherwise, in case X = Y,

then the related constraint must be a batch one, because the editor can only automatically

modify the value of b in y to v2 after the verification of the live constraint. In other words,

when X = Y, the constraint must be batch, because if it was live, as the context of the

constraint is X (= Y), it would be verified when the user tries to set b’s value to v2 in y,

and would disallow the setting in the case of a’s value in x be different than v1. However,

when X 6= Y, the constraint may be live, because, as X will be the context, the constraint

will not be verified when the user changes b’s value in y to v2.

4.3 Mapping the OntoUML Syntactical Constraints into OCL Expressions 74

We automatically initialize meta-attributes belonging to the first category by means of the

OCL language and the GMF plug-in, specifically, by editing the GMFMap file. We add a

“Feature Seq Initializer” to select the metaclass of the meta-attribute, a “Feature Value Spec”

in order to select the meta-attribute and a “Value Expression” to write the OCL expression that

calculates the correct value for the meta-attribute.

However, in order to automatically modify the value of meta-attributes belonging to the

second category, we have to manually customize the Java code generated by the GMF framework,

ocasionally also making use of OCL expressions, as for the calculation of the values of the upper

cardinality constraint for both association ends of Material Associations and the lower and upper

cardinality constraints of the source association end of Derivation relationships.

By defining those categories of meta-attributes, we can extend our categories of live and

batch constraints with the following ones:

New categories for live constraints:

• The constraints regarding meta-attributes belonging to the first category.

• The constraints regarding meta-attributes belonging to the second category and such that X

6= Y.

New category for batch constraints:

• The constraints regarding meta-attributes belonging to the second category and such that X

= Y.

The meta-attributes in the first category are: isAbstract (of the metaclass Classifier), lower (of

the metaclass MultiplicityElement), upper (of the metaclass MultiplicityElement), isReadOnly

(of the metaclass StructuralFeature), isDerived (of the metaclass Association), isShareable (of the

metaclass Meronymic), isEssential (of the metaclass Meronymic), isDerived (of the metaclass

Property) and isImmutablePart (of the metaclass Meronymic).

The meta-attributes in the second category are: lower (of the metaclass MultiplicityElement),

upper (of the metaclass MultiplicityElement), isEssential (of the metaclass Meronymic),

isImmutablePart (of the metaclass Meronymic), isExtensional (of the metaclass Collective),

isReadOnly (of the metaclass StructuralFeature) and isImmutableWhole (of the metaclass

Meronymic).

4.4 Definition of the OntoUML Concrete Syntax by using GMF 75

The explanations of the reasons of the pertinence of each of those meta-attributes in those

categories, as well as the OCL expressions utilized in order to initialize the value of those

meta-attributes are given in section A.5 of appendix A.

Finally, when “false”, the isShareable meta-attribute of the metaclass Meronymic specifies

that the cardinality in the association end connected to the whole (the source association end)

must be exactly one, i.e., both values of the lower and upper meta-attributes of the Property

in the source association end must be “1” (Definition 20, guaranteed by the fourth additional

syntactical constraint for the metaclass Meronymic, shown in page 72 and formalized in OCL in

Listing 84). The values of those cardinalities are not automatically modified by the editor when

the user sets the value of isShareable to “false”, because it is possible that the cardinalities are

correct, while the relationship is not actually non-shareable in the sense of Definition 20, e.g., in

case the user is confused by the ambiguous UML definition of shareability.

4.4 Definition of the OntoUML Concrete Syntax by
using GMF

In this chapter, we discuss how the OntoUML concrete syntax (defined in the OntoUML profile

(11, pp. 317–320, 334–338, 348–352)) is mapped in the GMF technologies for the creation of

the graphical editor.

As discussed in the subsubsection 2.2.5.2, the concrete syntax of a language is mapped to

GMF by a model (the *.gmfgraph file) that describes the appearance of the concrete syntax of

the language.

In this model, the elements in the concrete syntax can be represented by using four different

types of basic graphical elements within the GMF: Node, Connection, Compartment and Label.

Nodes are polygons or custom figures; Connections are lines that connects a source object to

a target object; Compartments are spaces inside Nodes in which one can put some graphical

objects; and Labels are objects that contains text and that are linked to Nodes or Connections by

a semi-visible link. By semi-visibility, we mean that an object is semi-visible iff it is only visible

when selected or moving.

Nodes and Connections can assume various geometrical forms. However, in our work, we

use just a few forms:

• Nodes are always represented as visible or semi-visible rectangles;

• Connections are represented as solid or dashed lines, which may have a decoration on its

4.4 Definition of the OntoUML Concrete Syntax by using GMF 76

source or target. We use five different decorations: a black circle; a black diamond; an

empty diamond; an open arrow; and a closed arrow.

In summary, we model the OntoUML concrete syntax in the following way:

1. The metaclasses Mode, Relator, Category, Mixin, RoleMixin, Collective, Kind, Quantity,

Phase, Role, simpleDatatype and structuredDatatype are represented as Nodes with a

rectangular shape having a compartment for attributes (which is invisible when empty), a

label «. . . » for their stereotypes, a label for the meta-attribute name, and, in the case of the

metaclass Collective, a label {extensional}7 for its meta-attribute isExtensional;

2. The metaclass GeneralizationSet is represented as a semi-visible Node with a rectangular

shape having a label for the meta-attribute name and another label for the meta-attributes

isCovering and isDisjoint;

3. The metaclasses Characterization, FormalAssociation and MaterialAssociation are

represented as Connections with a solid line shape having a label «. . . » for their stereotypes,

a label for its meta-attribute name and, in its extremities, labels for their role names and

cardinalities (which get their values from the meta-attributes of the associated instances of

Property);

4. The metaclass Mediation is represented as a Connection with a solid line shape having

a label «mediation» for its stereotype, a label for its meta-attribute name and, in its

extremities, labels for its cardinalities (which get their values from the meta-attributes of

the associated instances of Property);

5. The metaclass Derivation is represented as a Connection with a dashed line shape decorated

in the target with a black circle, and having, in its extremities, labels for its cardinalities

(which get their values from the meta-attributes of the associated instances of Property);

6. The metaclasses componentOf, memberOf, subCollectionOf, subQuantityOf are repre-

sented as Connections with a solid line shape decorated in the source with a (black or empty,

depending on its meta-attribute isShareable) diamond, and having a label «. . . » for their

stereotypes, a label for the meta-attribute name, a label for the meta-attributes isEssential,

isInseparable, isImmutablePart and isImmutableWhole8, and, in its extremities, labels for
7In general, in a label, the text that is related to a boolean meta-attribute is only visible when the value of the

meta-attribute is “true”.
8This label has a distinct behaviour: when the value of isEssential is “true” then the value of isImmutablePart

must be “true”, so there is no need to show a label “{essential, immutable part}”, because the label {essential}
carries the same information. However, if the value of isEssential is “false” and the value of isImmutablePart is

4.5 Transforming the Ecore Metamodel and Additional OCL Constraints in a Graphical Editor 77

its role names and cardinalities (which get their values from the meta-attributes of the

associated instances of Property);

7. The metaclass Datatype Relationship is represented as a Connection with a solid line shape

decorated in the target with an open arrow, and having a label «datatypeRelationship» for

its stereotype, and, in its extremities, labels for its role names and cardinalities (which get

their values from the meta-attributes of the associated instances of Property);

8. The metaclass Generalization is represented as a Connection with a solid line shape

decorated in the source with a closed arrow;

9. The metaclass Property is represented as a label for all OntoUML Relationships (excepting

Generalizations) or as an attribute in attribute compartments of the metaclasses that are

connected with datatypes by Datatype Relationships.

Since OntoUML is an extension of UML, the concrete syntax of the former is basically

the standard defined concrete syntax of latter. Even the additional modeling primitives and

meta-attributes of OntoUML are modeled by the standard visualization of stereotypes and tagged

values in UML, namely, names enclosed in guillemets (stereotypes) for modeling primitives and

names enclosed in brackets for meta-attributes.

4.5 Transforming the Ecore Metamodel and Additional
OCL Constraints in a Graphical Editor

In this section we describe how we implement the editor by using some Eclipse plug-ins.

Subsection 4.5.1 shows how OntoUML Editor is implemented; subsection 4.5.2 deals with

licensing the source code.

4.5.1 From the OntoUML Profile to OntoUML Editor

Firstly, we create an EMF project and build the Ecore metamodel depicted in Fig. 19 of section

4.2. In this metamodel, we also define some operations and some derived meta-references

(which, in Ecore, are called EOperations and EReferences, respectively) by including the OCL

formalizations posed in sections A.3 and A.4 of appendix A.

“true”, then “immutable part” can no longer be suppressed from the label {immutable part}. A similar argument is
valid for the meta-attributes isInseparable and isImmutableWhole.

4.5 Transforming the Ecore Metamodel and Additional OCL Constraints in a Graphical Editor 78

Then, we automatically transform this Ecore metamodel into a Genmodel file. In this

Genmodel, we set some variable names regarding the use of some JET templates, which are

needed in order to enable the EMF plug-in to handle, by means of the MDT plug-in, the OCL

expressions that are in the Ecore metamodel, as described in 49. From the Genmodel we perform

two automatic transformations (following 50) and get the Java code for the Ecore metamodel

and an EMF.Edit (51) framework, which provides generic reusable classes, which we use for

building our graphical editor. We perform a number of customizations on the generated Java

code, because, at the moment of writing this thesis, the EMF framework is not capable of

generating code that implements the structure that we need for our editor. The source code is

available at 59 (see section 4.5.2 for the licensing).

Thereon, we create a GMF project and perform more transformations on the Ecore

metamodel. From the Ecore metamodel, we create a GMFGraph file, which describes the

visualization of the graphical elements of the editor, namely, the types of nodes, the types

and thickness of the lines that represents the OntoUML relationships and the decorations of

the extremities of the relationships. In order to create this file, we indicate which metaclasses

or meta-attributes will be the nodes, the connections or the labels. We create the OntoUML

stereotypes as labels of the metaclasses that are defined as nodes.

From the Ecore metamodel, we also create a GMFTool file, in which, again, we select which

metaclasses or meta-attributes will be the nodes, the connections or the labels. In this file, we

manually create the names of the tools that will be in the tool palette of our editor and which are

utilized in order to instantiate the OntoUML constructs (metaclasses or meta-attributes) in nodes

or connections. We categorize these tools into three sections: Classes, Relationships and Rules.

In order to create a mapping between the Ecore metamodel, the GMFGraph file and the

GMFTool file, we create a GMFMap file. In this file, we map the elements from the Ecore

metamodel to their visualization specification (which is defined in the GMFGraph file) and their

creation tools specification (which is defined in the GMFTool file). In order to create this file, we

select which metaclass from the Ecore metamodel will be the root element. This root metaclass

has to be related by Containment EReferences (i.e., EReferences that have their “Containment”

properties set to “true”) with every metaclass that shall be instantiable by the editor. Also, again

we select which metaclasses or meta-attributes will be the nodes, the connections or the labels.

In this GMFMap file, we also put the OCL constraints, which can be verified in live or in batch

mode (see subsection 4.3.1 for live and batch constraints). In order to create live constraints,

we put them inside “Audit Rules” that have their “Use In Live Mode” properties set to “true”.

Otherwise, in order to create batch constraints, we put them inside “Audit Rules” that have

4.5 Transforming the Ecore Metamodel and Additional OCL Constraints in a Graphical Editor 79

their “Use In Live Mode” properties set to the default “false” value. One can see which OCL

constraints are validated in live/batch mode in appendix A.

Once the changes in the GMFMap file are finished, we transform it to a GMFGen file. This

file is utilized in the automatic generation of the Java code that implements the editor, by the

GMF framework. In this file, we also set some properties in order to enable the validation of

OCL constraints in OntoUML models: we set the properties “Live Validation UI Feedback”,

“Validation Decorators” and “Validation Enabled” to “true”; and “Shortcuts Decorator Provider

Priority” and “Validation Decorator Provider Priority” to “Highest”. Then, we generate the Java

code that implements the OntoUML Editor.

Due to the Bug 138179 (60) (which is not fixed at the moment of writing this thesis), when

we create an OntoUML relationship, we cannot automatically create the related Properties and

their visualizations, as labels of the relationship. Therefore, in order to provide visualizations for

cardinalities and role names of relationships, we had to include additional meta-attributes and

meta-relations in the OntoUML metamodel as well as to customize the Java code generated by

the EMF and GMF plug-ins.

4.5.2 Licensing

This graphical editor, named OntoUML Editor, is a Free and Open Source Software (FOSS)

and its source code is licensed under GPLv3 (61) (see annex A) and, occasionally, EPLv1 (62)

(see annex B). We consider GPLv3 more appropriate than EPLv1, because GPLv3 is a strong

copyleft license, while EPLv1 is a weak copyleft one. Strong copyleft licenses are the licenses

that must apply on all kinds of derived works, e.g., all derived works from a GPLv3 licensed

work must inherit its GPLv3 license. Unlike, weak copyleft licenses are the ones that allow some

derived works to have different licenses (63).

The GPLv3 and EPLv1 licenses are not compatible. Therefore, if there is a part of the

source code of OntoUML Editor that can be legally understood as a “derivative work” of some

program licensed under the EPLv1 (e.g., there is no clear understood if the code generated by

some Eclipse plug-ins, for example, EMF and GMF, are considered to be a derivative work (64)),

then, if accordingly to EPLv1 this part (or even the whole source code of OntoUML Editor) shall

be considered as licensed under EPLv1, then we will consider it (or the whole source code of

OntoUML Editor, if necessary) licensed under EPLv1. Otherwise, the source code of OntoUML

Editor is licensed under GPLv3.

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model 80

4.6 A Case Study for the OntoUML Editor: Building an
OntoUML Model

In this section, we illustrate the support provided by the editor for automatically checking

integrity constraints and deriving information in models. Integrity constraints are inspected via

two different mechanisms named live verification and batch verification. In order to illustrate

these features, let us make use of a simple domain model of a person, which can play the role of

a student, depending on a context. This simple universe of discourse is comprised of concepts

such as Person, Organization, Enrollment, Person’s subtypes (viz. Man and Woman), Person’s

roles (e.g., Student), Person’s phases (viz. LivingPerson, DeceasedPerson, Child, Teenager and

Adult), Person’s parts (e.g., Brain and Heart), Organization’s roles (e.g., School), Organization’s

phases (e.g. ActiveOrganization and ExtinctOrganization), Brain’s phases (viz. FunctionalBrain

and NonfunctionalBrain), Heart’s phases (viz. FunctionalHeart and NonfunctionalHeart) and the

category BiologicalOrgan.

In the following we briefly exemplify how the editor can assist the user in the construction

of a simple conceptual model in this domain.

4.6.1 Live Verification

In this conceptualization, Person would typically be modeled in OntoUML as a class with a

«kind» stereotype, and a Student would be modeled as a class with a «role» stereotype, as is

shown in Fig. 20. In OntoUML, the «kind» stereotype is used to represent the UFO Kind

category, and the «role» stereotype represents the UFO Role category.

Figure 20: A simple model.

Now, as discussed in 20, a common mistake in conceptual modeling is the use of subtyping

to represent alternative allowed types, i.e., alternative types that supply players for a given role.

In this particular case, suppose that the user attempts to represent that instances of Person are

possible players of the role Student, by using subtyping. In other words, the user tries to model a

Kind Person as a subtype of the Role Student. If allowed, this would not be an ontologically

correct model, since it is not the case that every instance of Person is a Student, and since a

Person cannot cease to be a Person but it can cease to be a Student. When attempting to create

this ontologically incorrect model with the editor presented here, the integrity constraint shown

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model 81

in Listing 5 is violated. As consequence, the editor ignores the corresponding model updating

action and prompts a live verification pop-up that alerts the user of his attempt of creating an

invalid model. The verification pop-up resulting from this example is shown in Fig. 21.

Figure 21: Live verification example.

Listing 5: OCL expression that constrains a rigid substantial universal to not be a subclass of an

anti-rigid universal.

1 context Generalization

2 inv SubstanceSortalConstraint3: if self.specific.

oclIsKindOf(SubstanceSortal) then not (self.general.

oclIsKindOf(AntiRigidSortalClass) or self.general.

oclIsKindOf(RoleMixin)) else true endif

A correct, but incomplete, modeling would make Student a subtype of Person, as shown in

Fig. 22. Nevertheless, if we manually verify this model, the editor will advise that a Role must

be connected to Mediation relationships, as shown in Fig. 22.

Figure 22: An incomplete solution to the model pictured in Fig 21.

The following subsection shows a correct modeling of Person and Student, by making the

Role Student a subtype of the Kind Person and depicting the context in which a Person is a

Student, by creating Mediation relationships and Relators.

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model 82

4.6.2 Deriving Model Information

In order to represent the relation between Student and Person, one should model Student as a

Role played by Person in a certain context, where he studies in a School. Analogously, one

should model School as a Role played by an Organization when having Students. This context

is materialized by the Material Relation study (represented as the «material» stereotype in

OntoUML), which is in turn, derived from the existence of the Relator Universal Enrollment

(«relator»). In other words, we can say that a particular Student x studies in a particular School

y iff there is an Enrollment that mediates x and y. This situation is illustrated in Fig. 23. The

mediation formal relations between the Relator Enrollment and the Roles Student and School are

responsible for the existence of the derived Material Relation study that holds between Student

and School.

Furthermore, the upper cardinality restrictions of both extremities of the study relation can

be systematically calculated from these associations as exemplified in Fig. 41 and implemented

in OCL as shown in Listings 6 and 7. The derivation of study from the mediation relations is

represented by a Derivation association (pictured as a dashed line association between study

(that is in the source extremity) and Enrollment (that is in the target extremity, where there is

a black circle)), which have its upper and lower cardinality constraints of the source extremity

systematically calculated, as shown in Listings 8 and 9. Regarding the target extremity of

Derivation associations, from the OntoUML profile, the upper and lower cardinality constraints

must be exactly one (see the third constraint of Derivation associations, in page 49, which is

formalized in OCL in Listing 47).

«kind»
Person

«kind»
Organization

«role»
Student

«role»
School

«relator»
Enrollment

«mediation»

1..*

1

«mediation»

1..*

1

«material»
study

1..* 1..*

1

1

Figure 23: Example of derivation of model information.

Listing 6: OCL expression that calculates upper cardinalities for one extremity of Material

Associations.

1 context MaterialAssociation ::

deriveUpperMaterialAssociationExt1 ():EInt

2 body: let der:Derivation = Derivation.allInstances ()->

select(x | x.source ->any(true).oclAsType(Property).

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model 83

endType = self)->any(true), matext1:Type = self.

associationEnd ->at(1).oclAsType(Property).endType.

oclAsType(Type), matext2:Type = self.associationEnd ->at

(2).oclAsType(Property).endType.oclAsType(Type) in (let

rel:Relator = der.target ->any(true).oclAsType(Property

).endType.oclAsType(Relator) in (let med1:Set(Mediation

) = Mediation.allInstances ()->select(x | x.source ->

exists(y | y.oclAsType(Property).endType = rel) and x.

target ->exists(y | y.oclAsType(Property).endType =

matext1)), med2:Set(Mediation) = Mediation.allInstances

()->select(x | x.source ->exists(y | y.oclAsType(

Property).endType = rel) and x.target ->exists(y | y.

oclAsType(Property).endType = matext2)) in (let

med1targetupper: Integer = med1.target ->any(true).

oclAsType(Property).upper , med2sourceupper: Integer =

med2.source ->any(true).oclAsType(Property).upper in (if

((med2sourceupper = -1) or (med1targetupper = -1))

then (-1) else (med2sourceupper*med1targetupper) endif)

)))

Listing 7: OCL expression that calculates upper cardinalities for the other extremity of Material

Associations.

1 context MaterialAssociation ::

deriveUpperMaterialAssociationExt2 ():EInt

2 body: let der:Derivation = Derivation.allInstances ()->

select(x | x.source ->any(true).oclAsType(Property).

endType = self)->any(true), matext1:Type = self.

associationEnd ->at(1).oclAsType(Property).endType.

oclAsType(Type), matext2:Type = self.associationEnd ->at

(2).oclAsType(Property).endType.oclAsType(Type) in (let

rel:Relator = der.target ->any(true).oclAsType(Property

).endType.oclAsType(Relator) in (let med1:Set(Mediation

) = Mediation.allInstances ()->select(x | x.source ->

exists(y | y.oclAsType(Property).endType = rel) and x.

target ->exists(y | y.oclAsType(Property).endType =

matext1)), med2:Set(Mediation) = Mediation.allInstances

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model 84

()->select(x | x.source ->exists(y | y.oclAsType(

Property).endType = rel) and x.target ->exists(y | y.

oclAsType(Property).endType = matext2)) in (let

med1sourceupper: Integer = med1.source ->any(true).

oclAsType(Property).upper , med2targetupper: Integer =

med2.target ->any(true).oclAsType(Property).upper in (if

((med1sourceupper = -1) or (med2targetupper = -1))

then (-1) else (med1sourceupper*med2targetupper) endif)

)))

Listing 8: OCL expression that calculates lower cardinalities for Derivations.

1 context Derivation :: deriveLowerDerivation ():EInt

2 body: let mat:MaterialAssociation = self.source ->any(true)

.oclAsType(Property).endType.oclAsType(

MaterialAssociation), rel:Relator = self.target ->any(

true).oclAsType(Property).endType.oclAsType(Relator) in

(let matext1:Type = mat.associationEnd ->at(1).

oclAsType(Property).endType.oclAsType(Type), matext2:

Type = mat.associationEnd ->at(2).oclAsType(Property).

endType.oclAsType(Type) in (let med1:Set(Mediation) =

Mediation.allInstances ()->select(x | x.source ->exists(y

| y.oclAsType(Property).endType = rel) and x.target ->

exists(y | y.oclAsType(Property).endType = matext1)),

med2:Set(Mediation) = Mediation.allInstances ()->select(

x | x.source ->exists(y | y.oclAsType(Property).endType

= rel) and x.target ->exists(y | y.oclAsType(Property).

endType = matext2)) in (let med1targetlower: Integer =

med1.target ->any(true).oclAsType(Property).lower ,

med2targetlower: Integer = med2.target ->any(true).

oclAsType(Property).lower in (if ((med1targetlower =

-1) or (med2targetlower = -1)) then (-1) else (

med1targetlower*med2targetlower) endif))))

Listing 9: OCL expression that calculates upper cardinalities for Derivations.

1 context Derivation :: deriveUpperDerivation ():EInt

2 body: let mat:MaterialAssociation = self.source ->any(true)

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model 85

.oclAsType(Property).endType.oclAsType(

MaterialAssociation), rel:Relator = self.target ->any(

true).oclAsType(Property).endType.oclAsType(Relator) in

(let matext1:Type = mat.associationEnd ->at(1).

oclAsType(Property).endType.oclAsType(Type), matext2:

Type = mat.associationEnd ->at(2).oclAsType(Property).

endType.oclAsType(Type) in (let med1:Set(Mediation) =

Mediation.allInstances ()->select(x | x.source ->exists(y

| y.oclAsType(Property).endType = rel) and x.target ->

exists(y | y.oclAsType(Property).endType = matext1)),

med2:Set(Mediation) = Mediation.allInstances ()->select(

x | x.source ->exists(y | y.oclAsType(Property).endType

= rel) and x.target ->exists(y | y.oclAsType(Property).

endType = matext2)) in (let med1targetupper: Integer =

med1.target ->any(true).oclAsType(Property).upper ,

med2targetupper: Integer = med2.target ->any(true).

oclAsType(Property).upper in (if ((med1targetupper =

-1) or (med2targetupper = -1)) then (-1) else (

med1targetupper*med2targetupper) endif))))

4.6.3 Batch Verification

A more complete version of a model in this domain is shown in Fig. 24, which represents some

of the parts that compose a Person. In this figure, it is represented that a Person is composed of

one non-shareable (see Definition 20) essential Brain, where the “essential” tag in this part-whole

relation means that the whole is existentially dependent of the part (see Definition 24). However,

part-whole relations must obey the so-called weak supplementation axiom (the first syntactical

constraint for the metaclass Meronymic, shown in page 55 and formalized in OCL in Listing 54),

which, in simple words, states that in order to be a whole, an entity must have at least two disjoint

parts. Therefore, to satisfy this axiom, if a Person is composed of one and only one Brain, it

must also have another Person component as a part. Now, differently from the Person-Student

subtyping example discussed in subsection 4.6.1, the lack of a second part represented in the

model that would meet the requirement posed by the weak supplementation axiom can be due to

a momentary incompleteness of the model. In other words, after the part-whole relation between

Person and Brain is represented, the user can still include information in the model that will

4.6 A Case Study for the OntoUML Editor: Building an OntoUML Model 86

prevent this model from being considered ontologically inconsistent. As this example shows,

there are verification actions that should only be performed by the tool once the user deems

suitable. Now, as illustrated in Fig. 25, if this model is verified with the presented information,

the editor prompts to the user that, in that form, the model is considered incorrect. Furthermore,

the editor informs the user by highlighting the source and reason of inconsistency in the model.

«kind»
Person

«kind»
Organization

«role»
Student

«role»
School

«relator»
Enrollment

«kind»
Brain

«mediation»

1..*

1

«mediation»

1..*

1

«material»
study

1..* 1..*

1

1

«componentOf»
{essential}

1

1

Figure 24: Batch verification example.

Figure 25: Verification of the OntoUML model depicted in Fig 24.

A possible solution to this issue is to represent that a Person is composed of something more

than a Brain, e.g., a Heart. Fig. 26 depicts this alternative representation, where a Person is

composed of a non-shareable essential unique Brain and a non-shareable unique Heart.

4.6.4 A Larger Model

A more complete case study in this domain could represent that a Person is partitioned into the

SubKinds Man and Woman, and is also partitioned in a Living phase and a Deceased phase.

The Living phase, in its turn, is partitioned into a Child phase, a Teenager phase and an Adult

one. Also, Biological Organs like Brain and Heart are partitioned into a Functional phase and a

4.7 Conclusions 87

«kind»
Person

«kind»
Organization

«role»
Student

«role»
School

«relator»
Enrollment

«kind»
Brain

«kind»
Heart

«mediation»

1..*

1

«mediation»

1..*

1

«material»
study

1..* 1..*

1

1

«componentOf»
{essential}

1

1

«componentOf»

1

1

Figure 26: A possible solution to correct the model pictured in Fig. 24.

Non-functional one, which are the Phases FunctionalBrain and NonfunctionalBrain (regarding

the Kind Brain), and FunctionalHeart and NonfunctionalHeart (regarding the Kind Heart).

Furthermore, when living, a Person must have an unique non-shareable and immutable

FunctionalBrain as part (i.e., the person cannot change its brain while living) and a

FunctionalBrain must be a part of an immutable LivingPerson (i.e., a brain cannot change its

owner while being functional). However, a LivingPerson must have an unique FunctionalHeart

as part, but he/she may change his/her heart; while a FunctionalHeart optionally may be

a part of a LivingPerson. There is also a Kind Organization that is partitioned into the

Phases ActiveOrganization and ExtinctOrganization. Finally, when a LivingPerson studies

in an ActiveOrganization by means of an Enrollment (conversely, when an ActiveOrganization

provides educational services to a LivingPerson by means of an Enrollment), then this person is

said to play the role of a Student and the organization plays the role of a School. This model is

depicted in Fig. 27.

It is worth to notice that, as Phases are always defined in a partition set (11, p. 103, formulæ 9,

10) (cited in page 33), then this model must have a covering and disjoint GeneralizationSet from

all the Phases to its supertypes. Contrariwise, OntoUML does not requires GeneralizationSets

for the SubKinds Man and Woman.

4.7 Conclusions

In this chapter, we explain how we build a graphical editor for building and verifying OntoUML

models, by using the Eclipse plug-ins EMF, MDT and GMF. We model the OntoUML metamodel

in Ecore, its syntactical constrains into OCL expressions and its concrete syntax is modeled by

4.7 Conclusions 88

G3
{complete}

G6
{disjoint,complete}

G2
{disjoint,complete}

G5
{disjoint,complete}

G4
{disjoint,complete}«kind»

Brain

«kind»
Heart

«kind»
Person

«relator»
Enrollment

«role»
Student

«kind»
Organization

«role»
School

«phase»
LivingPerson

«phase»
DeceasedPerson

«phase»
ActiveOrganization

«phase»
ExtinctOrganization

«phase»
FunctionalBrain

«phase»
NonfunctionalBrain

«phase»
FunctionalHeart

«phase»
NonfunctionalHeart

«category»
BiologicalOrgan

«phase»
Child

«phase»
Teenager

«phase»
Adult

«subkind»
Woman

«subkind»
Man

G1
{disjoint,complete}

«mediation»

student
1..*

1

«mediation»

school

1..*

1

«material»
study

1..*

1..*

derived_study

11

«componentOf»
c1 11

{immutable part,immutable whole}

«componentOf»

c2

0..1

1

Figure 27: A larger model.

using GMF.

Also, we create new invariants and formalize them in OCL in order to extend the original

set of OntoUML syntactical constraints that is posed in the OntoUML profile shown in 11, pp.

317–320, 334–338, 348–352.

We present a case study by exemplifying the two types of syntactical verification, namely

Batch and Live Validation, and showing how they can assist the modeler in order to build

syntactically correct OntoUML models. We also demonstrate the capability of our editor in

automatically deriving and modifying the value of a number of meta-attributes, in order to save

the user from specifying these values and also guaranteeing that they are consistent.

Moreover, in this chapter we implement a number of artifacts from the OntoUML

specification in a declarative mode, in terms of OCL expressions. For example, we implement

(i) all the OntoUML syntactical constraints, (ii) all the derived meta-attributes, and (iii) some

automatic derivation of information, as OCL expressions which are handled by the MDT

Eclipse plug-in (65). By implementing these artifacts in a declarative mode, we have a number

of advantages when compared to a procedural codification, such as: (i) direct comparability

4.7 Conclusions 89

between our implementation and the abstract constraints from the original OntoUML profile,

because declarative expressions describes what computation should be performed instead of how

to compute it; (ii) reusability of the metamodel through different implementations, etc..

The binaries and source code of this editor are available at 59 and licensed under GPLv3

and EPLv1. Also, appendix C deals with its installation and the creation of OntoUML models.

90

5 A Tool for Supporting the
Validation of OntoUML Models

We believe that, in general, performing validation of OntoUML models is not an easy task. Many

of the ontological meta-properties incorporated into OntoUML are modal in nature and it may

be difficult for human beings to reason upon the several possible changes in the instances in a set

of worlds.

Therefore, in this chapter, we show how to help one to validate OntoUML models by

instance generation and analysis (section 5.1). We argue that it is possible to generate instances

of OntoUML models by transforming them to Alloy specifications and using the Alloy Analyzer

tool to generate the instances (sections 5.2 and 5.5). Based on this premise, we utilize our

QS5 formalization of the OntoUML constructs (section 5.3) in order to model the modality

required by OntoUML models in Alloy by means of Kripke structures (section 5.4) and

automatically transform OntoUML models to Alloy specifications by creating and using an

ATLAS Transformation Language1 (ATL) transformation from OntoUML models to Alloy

specifications (appendix B). Furthermore, in section 5.6 we present the illustration of the

mapping of an OntoUML model to an Alloy specification using the running example employed

throughout this thesis (Fig. 27, created in section 4.6). Moreover, this section exemplifies

an instance generated by the Alloy Analyzer. Section 5.6 also discusses the customization of

visualization themes in the Alloy Analyzer in order to provide visualization mechanisms to the

generated instances that are more amenable to human users. Finally, in section 5.7 we pose our

conclusions for this chapter.

5.1 Validating OntoUML Models by Instances Analysis

In section 1.3, we said that we aim at supporting model validation by generating model instances.

We believe that the analysis of a well-chosen set of these instances (e.g., instances that exhibit

important behaviour by dynamic classification) can improve the user’s confidence in the validity

of the model.
1http://www.eclipse.org/m2m/atl.

5.1 Validating OntoUML Models by Instances Analysis 91

For example, consider that a modeler built the OntoUML model shown in Fig. 28. This

model is automatically verified by the OntoUML Editor, so it is syntactically correct and seems

to be a reasonable model.

Figure 28: A verified but invalid OntoUML model.

However, this model would allow an instance in which a person changes his/her (functional)

brain while living. This instance is shown in Figs. 29 and 30. Fig. 29 shows the ordering of

the temporal moments, while Fig. 30 shows the dynamic classification of the atoms within the

moments depicted in Fig. 29. In Fig. 29, the counterfactual world represents a world containing

state-of-affairs that could have happened, but, accidentally, did not happened. In other words,

counterfactuals are state-of-affairs that were possible to happen in some moment in the past, but

did not happened. This instance shows that a LivingPerson “Person” has a “Brain1” in the past

moment and a “Brain0” in the current moment, when he/she is still a LivingPerson.

Figure 29: The temporal ordering of worlds of the instance shown in Fig. 30.

Currently, it is not feasible that a living person changes his/her brain while living. This

unintended behaviour could have been detected if the modeler had this instance at hand when

building this model. A possible correction is to make the «componentOf» relationship between

FunctionalBrain and LivingPerson an immutable part one, not allowing a person to change

his/her brain while living, as shown in Fig. 31

5.1 Validating OntoUML Models by Instances Analysis 92

(a) Instance at the past world. (b) Instance at the counterfactual world.

(c) Instance at the current world.

Figure 30: Dynamic classification of the atoms within the moments depicted in Fig. 29.

Figure 31: An attemption to correct the model shown in Fig. 28.

Nevertheless, the corrected version shown in Fig. 31 would allow a functional brain to

change from a (living) person to another (living) person. This instance is shown in Figs. 29

and 32. Fig. 29 shows the ordering of the temporal moments, while Fig. 32 shows the dynamic

classification of the atoms within the moments depicted in Fig. 29. This instance shows that a

FunctionalBrain “Brain” is owned by “Person0” in the past moment, while being owned by a

“Person1” in the current moment, when it is still a FunctionalBrain.

It is feasible that a brain go from a person to a container with formaldehyde, but, currently,

while not being a part of a living person, the brain must be non-functional. As in our model we

only describe meronymic relationships between functional brains and alive persons, a functional

5.1 Validating OntoUML Models by Instances Analysis 93

(a) Instance at the past world. (b) Instance at the counterfactual world.

(c) Instance at the current world.

Figure 32: Dynamic classification of the atoms within the moments depicted in Fig. 29.

brain should not be allowed to change its owner while being functional. Again, this unintended

behaviour could have been detected if the modeler had this instance at hand. A possible fix to

this model is shown in Fig. 33, where the «componentOf» relationship between Brain and Person

is also an immutable whole one, not allowing a brain to change its owner while being functional.

Figure 33: A possible correction to the model shown in Fig. 31.

Therefore, we consider that a tool capable of automatically generating instances of conceptual

models would be valuable for the validation phase, when the dynamic classification of instances

would exhibit unintended behaviours or improve modelers’ confidence in the validity of the

model.

5.2 Architecture 94

Thus, in order to automatically generate instances of OntoUML models, we built a model

transformation from OntoUML to Alloy2, respecting UFO’s (modal) axioms, so we can use the

Alloy Analyzer to automatically generate instances.

5.2 Architecture

The architecture of this model transformation is shown in Fig. 34. From an OntoUML model,

we apply an OntoUML to Alloy model transformation (described in section 5.5) and get an

Alloy specification. Within the Alloy Analyzer, we can automatically generate instances for this

specification, which are composed of atoms and relations between atoms.

In order to facilitate the validation of the OntoUML models, we want the generated atoms

and relations to be ordered in a branching time temporal sequence, so the modeler can perceive

the dynamic classification of the atoms. However, as Alloy has no built in notion of temporal

sequence, we create (i) a set of atoms to represent temporal worlds; and (ii) a partial order

relation from atoms representing temporal worlds to atoms representing OntoUML constructs,

indicating which atoms exist (i.e., are in the domain of quantification) of each temporal world.

Therefore, if we apply our OntoUML to Alloy model transformation to an OntoUML model M,

and subsequently use the Alloy Analyzer to generate instances of M, then for each generated

instance, the atoms that are not temporal worlds are interpreted as momentary states of instances

of the OntoUML classifiers taken from M. Section 5.4 shows how we model these branching

time temporal worlds in Alloy.

Moreover, when the Alloy Analyzer generates instances for OntoUML models, the temporal

worlds and existence relations are represented just as any other Alloy atom/relation, leading

to instances that are not suitable to be inspected and reasoned upon by the human modeler.

However, the Alloy Analyzer allows the creation of visualization themes (66) for customizing

the visualization of the generated atoms and relations.

Therefore, we create two visualization themes, one for the visualization of the branching

time temporal ordering of the worlds (shown in Listing 117 in appendix E), and the other for

the visualization of temporal snapshots by projecting the generated atoms and relations in each

world, so the user can select a world in order to see which atoms and relations exist in that world

and how they are classified (shown in Listing 118 in appendix E).

Finally, the Alloy Analyzer tool can only search for instances within a restricted context,

2This transformation is specified in ATL and is capable of automatically generating Alloy specifications from
OntoUML models. The complete transformation is shown in appendix B.

5.3 Modeling OntoUML Constructs in QS5 95

Figure 34: Architecture.

i.e., a given finite maximum number of atoms. So, unlike theorem provers, Alloy Analyzer can

not prove that a specification is unsatisfiable. But, if Alloy Analyzer finds an instance, then the

Alloy specification is satisfiable (semantically consistent)3. If the tool can not find an instance,

either the Alloy specification is unsatisfiable or the given context was too small. This is why

Alloy is considered a “lightweight formal method” (Bowen et al.(67), 1996 apud Jackson(25),

2006, p. xiii).

5.3 Modeling OntoUML Constructs in QS5

In this section, in order to facilitate the understanding of the dynamics of creation and destruction

of OntoUML instances within worlds, we revisit the possibilist formalization of some OntoUML

3We can only guarantee that an OntoUML model is satisfiable given the satisfiability of the Alloy specification
if we can guarantee the formal correctness of the transformation between models of the former kind to the latter.
In this thesis, due to time limitations, this proof could not be constructed. As a consequence, we assume here the
correctness of this transformation.

5.3 Modeling OntoUML Constructs in QS5 96

and UFO concepts (11, 55) in the QS5 actualist (i.e., having a varying domain of quantification)

quantified modal logic. We also make some minor modifications in a number of definitions that

will be pointed by specific remarks in this section.

By revisiting the possibilist formalization into an actualist one, the existence predicate ε will

be identified with the pertinence of individuals within the varying domain of quantification D(w),

as shown in section 2.1. Therefore, in an actualist formalization, there is no need to define an

explicit existence predicate ε , which would be necessary in a possibilist approach, in case there

is a need to predicate about the existence of individuals within worlds. Moreover, this alternative

formalization can be reutilized by other people for different purposes.

In the following, we will model the modal definitions that we use to characterize some key

notions of UFO, like rigidity, anti-rigidity, relational dependence, existential dependence, specific

dependence, essential part, immutable part, generic dependence, mandatory part, inseparable

part, mandatory whole and immutable whole. As shown in this section, some of the original

definitions posed in 11, 55 had to be revised to comply with this new actualist mode.

In 55, p. 9, rigidity and anti-rigidity are defined in the following way:

Definition (Rigidity): A type T is rigid if for every instance x of T, x is
necessarily (in the modal sense) an instance of T. In other words, if x
instantiates T in a given world w, then x must instantiate T in every world
w8: R(T),�(∀x(T(x)→�(T(x)))). �(55, p. 9)
Definition (Anti-Rigidity): A type T is anti-rigid if for every instance x of T,
x is possibly (in the modal sense) not an instance of T. In other words, if x
instantiates T in a given world w, then there is a possible world w8 in which x
does not instantiate T: AR(T),�(∀x(T(x)→ ♦(¬T(x)))). �(55, p. 9)

Those possibilist definitions are neutral regarding the existence of individuals within worlds.

In our actualist revisitations of Rigidity and Anti-Rigidity, we make explicit our commitments

with the existence (i.e., pertinence) of individuals within the domains of quantification of the

worlds.

Definition 21 (Rigidity (revisited)): A Universal U is rigid if for every instance x of U, x is

necessarily (in the modal sense) an instance of U. In other words, if x instantiates U in a given

world w, then x must instantiate U in every world w8 in which x exists and that is accessible from

w: R(U),�(∀x(U(x)→�(ε(x)→ U(x)))). �

Definition 22 (Anti-Rigidity (revisited)): A Universal U is anti-rigid if for every instance

x of U, x possibly (in the modal sense) exists not being an instance of U. In other words, if x

instantiates U in a given world w, then there is a possible world w8, accessible from w, in which

x exists and in which x does not instantiate U: AR(U),�(∀x(U(x)→ ♦(ε(x)∧¬U(x)))). �

5.3 Modeling OntoUML Constructs in QS5 97

We will not revisit Relational Dependence and Existential Dependence, as their formalization

in 55, p. 10 and 55, p. 11, respectively, are suitable for both possibilist and actualist

interpretations. However, we remark that we are assuming that every individual in the domains

of quantification possibly exists and possibly do not exist (i.e., there is no necessarily existing

individuals) (11). Therefore, the definition of Existential Dependence is not trivially satisfied.

For example, for an arbitrary individual x: (i) if x were allowed to exist in no worlds (i.e., if x

could necessarily not exist), then for every individual y, ed(x,y) would be trivially true; and (ii) if

x were allowed to exist in every world (i.e., if x could necessarily exist), then for every individual

y, ed(y,x) would be trivially true.

Definition (Relational Dependence): A type T is relationally dependent on
another type P via relation R iff for every instace x of T, there is an instance y
of P such that x and y are related via R: R(T,P,R),�(∀x(T(x)→∃y(P(y)∧
R(x,y)))). � (55, p. 10)
Definition (Existential Dependence): Let the predicate ε denote existence4.
We have that an individual x is existentially dependent on another individual
y iff, as a matter of necessity, y must exist whenever x exists, or formally:
ed(x,y),�(ε(x)→ ε(y)). � (55, p. 11)

Moreover, we will change some statements from section 3.3. We will distinguish the two

types of part-whole relations based on the distinction between specific dependence (Definition 23)

and the one of generic dependence (Definition 26) instead of existential dependence (Definition

1) and the one of generic dependence (Definition 14).

Definition 23 (specific dependence): For every individuals x and y, and Universals U1 and

U2: SD(x,y,U1,U2), ♦(ε(x)∧U1(x))∧�((ε(x)∧U1(x))→ (ε(y)∧U2(y))). In other words,

whenever x exists instantiating U1, then y must exist instantiating U2. �

As one can observe by contrasting the definitions 23 and 26, the former is a relation between

two individuals, whilst the latter is a relation between an individual and a universal.

Let us explain the reason we substitute existential dependence by specific dependence

by means of the model shown in Fig. 27. In this model, the parthood relationship c1

between FunctionalBrain and LivingPerson does not imply existential dependence, because

when a LivingPerson John ceases to be a LivingPerson, he may continue existing (being a

DeceasedPerson) but it is possible (in the modal sense) that his previous Brain b no longer exists.

The relationship c1 is one of specific dependence, because it is necessary (in the modal sense) that

the Brain b exists (being a FunctionalBrain) only when John is a LivingPerson. Therefore, unlike

essential or inseparable parthood relations, immutable ones do not imply existential dependence.

However, essential, inseparable or immutable parthood relations imply specific dependence.
4See footnote 2 of chapter 3 for the predicate ε .

5.3 Modeling OntoUML Constructs in QS5 98

Contrariwise, a mandatory parthood relation is one that implies generic dependence from the

part to the whole (mandatory whole, Definition 29) or from the whole to the part (mandatory

part, Definition 27).

We can then further qualify the division of the parthood relations regarding modality, which

was presented in section 3.3:

i The relations that imply specific dependence (Definition 23), such as relations that

are essential (Definition 24), inseparable (Definition 28), immutable regarding the part

(Definition 25) or immutable regarding the whole (Definition 30);

ii The relations that imply generic dependence (Definition 26), such as relations that are

mandatory regarding the part (Definition 27) or mandatory regarding the whole (Definition

29)

Furthermore, in 55, p. 11, essential parthood is defined in the following way5:

Definition (essential part): An individual x is an essential part of another
individual y iff, y is existentially dependent on x and x is, necessarily, a
part of y: EP(x,y) , ed(y,x)∧�(x ≤ y). This is equivalent to stating that
EP(x,y) , �((ε(y) → ε(x)) ∧ (x ≤ y)). We adopt here the mereological
continuism defended by 58, which states that the part-whole relation should
only be considered to hold among existents, i.e., ∀x,y((x≤ y)→ (ε(x)∧ε(y))).
As a consequence, we can have this definition in its final simplification:
EP(x,y),�(ε(y)→ (x≤ y)). �(55, p. 11)

In the definition of essential part given above, the last formula is not a simplification of the

first formulæ, as it determines that x must only exist when y exists and not that x and y must exist in

every world. We also have to define an actualist formula for the mereological continuism, because

the possibilist one given above is a tautology in an actualist interpretation. Moreover, in order to

make a distinction between the de re and de dicto modalities6, 55, p. 16 suggests to use the term

“essential part” only when the whole is rigid. Therefore, we will define essential parthood as

follows: Definition 24 (essential part (revisited)): For every individuals x and y, and Universals

U1 and U2: EP(x,y,U1,U2), R(U2)∧♦(ε(y)∧U2(y))∧�((ε(y)∧U2(y))→ (ε(x)∧U1(x)∧
(x ≤ y))). Moreover, we adopt here the mereological continuism defended by Simons (apud

Guizzardi(55), 2007, p. 11), which states that the part-whole relation should only be considered

to hold among existents, i.e., ∀x,y �((x ≤ y) → (ε(x)∧ ε(y))). As a consequence of the

mereological continuism, of the rigidity of U2 and of the possibility of y to exist instantiating U2,

5Following Simons (apud Guizzardi(55), 2007, p. 11) we use the symbols ≤ and < to represent parthood and
proper parthood, respectively, and we have that (x≤ y), (x < y)∨ (x = y).

6For de re and de dicto modalities, see 55.

5.3 Modeling OntoUML Constructs in QS5 99

we have the following simplification: EP(x,y,U1,U2), R(U2)∧♦(ε(y)∧U2(y))∧�(ε(y)→
(U1(x)∧ (x ≤ y))), i.e., U2 is rigid and it is possible that y exists instantiating U2 and it is

necessary that whenever y exists, then x must instantiate U1 and be part of y. �

Also, 11, p. 286 and 55, p. 17 suggest that when the whole is anti-rigid, we shall call the

part immutable instead of essential. As every essential part is also immutable (11, p. 286)(55,

pp. 17-18), then essential part is a specialization of immutable part. While immutable parts

hold for rigid, semi-rigid or anti-rigid wholes, essential parts are maintained only between

a part and a rigid whole. Therefore, we will define immutable part in the following way:

Definition 25 (immutable part): For every individuals x and y, and Universals U1 and U2:

IP(x,y,U1,U2),♦(ε(y)∧U2(y))∧�((ε(y)∧U2(y))→ (U1(x)∧ (x≤ y))), i.e., it is necessary

that whenever y exists instantiating U2, then x must instantiate U1 and be a part of y. �

In 55, p. 12, Guizzardi defines generic dependence and mandatory part in the following

manner:

Definition (generic dependence): An individual y is generically dependent on
a type T iff, whenever y exists it is necessary that an instance of T exists. This
can be formally characterized by the following formula schema: GD(y,T),
�(ε(y)→∃T,x(ε(x))). � (55, p. 12)
Definition (mandatory part): An individual x is a mandatory part of another
individual y iff, y is generically dependent of a type T that x instantiates, and
y has, necessarily, as a part an instance of T: MP(T,y),�(ε(y)→∃T,x(x <
y)). � (55, p. 12)

However, we want our definition of generic dependence to be more generic, constraining

individuals regarding the universals they instantiate instead of their existence. In other words,

we will revisit generic dependence in a de dicto interpretation instead of the actual de re one:

Definition 26 (generic dependence (revisited)): For every individual x and Universals U1

and U2: GD(x,U1,U2) , ♦(ε(x)∧U1(x))∧�((ε(x)∧U1(x))→ ∃y U2(y)). In other words,

whenever x exists instantiating U1 it is necessary that an instance of U2 exists. �

Regarding mandatory parts, we will also apply some results of 55, p. 17 regarding de re and

de dicto modalities. In a nutshell, consider the OntoUML model pictured in Fig. 27, where a

Person may be a LivingPerson and every LivingPerson must have at least one FunctionalHeart.

The definition of mandatory part given above will not hold in an instance containing a world

w in which a person is living and have one functional heart, and a world w8 in which he/she

is deceased and have no heart. This problem arises from the fact that, actually, a person is

constrained to have at least one functional heart only when being alive and not in every world

he/she exists, as the definition of mandatory part states. Therefore, we will redefine mandatory

part: Definition 27 (mandatory part (revisited)): For every individual x and Universals U1

5.4 Modeling Kripke Structures in Alloy 100

and U2: MP(U1,U2,x),♦(ε(x)∧U1(x))∧�((ε(x)∧U1(x))→∃y(U2(y)∧ (y < x))), i.e., it is

necessary that whenever x exists instantiating U1, then there must exist an individual as a part of

x and instantiating U2. �

Also, in 55, p. 14, inseparable part and mandatory whole are defined in the following way:

Definition (inseparable part): An individual x is an inseparable part of another
individual y iff, x is existentially dependent on y, and x is, necessarily, a part of
y: IP(x,y),�(ε(x)→ (x≤ y)). � (55, p. 14)
Definition (mandatory whole): An individual y is a mandatory whole for
another individual x iff, x is generically dependent on a type T that y instantiates,
and x is, necessarily, part of an individual instantiating T: MW (T,x) ,
�(ε(x)→∃T,y(x < y)). � (55, p. 14)

For the same reasons that we redefined essential part, we will redefine inseparable part, and

for the same reasons that we redefined mandatory part, we will redefine mandatory whole.

Definition 28 (inseparable part (revisited)): For every individuals x and y, and Universals

U1 and U2: IP(x,y,U1,U2), R(U2)∧♦(ε(x)∧U2(x))∧�(ε(x)→ (U1(y)∧ (x≤ y))),i.e., U2

is rigid and it is possible that x exists instantiating U2 and it is necessary that whenever x exists,

then y must instantiate U1 and be a whole for x. �

Definition 29 (mandatory whole (revisited)): For every individual x and Universals U1

and U2: MW (U1,U2,x), ♦(ε(x)∧U1(x))∧�((ε(x)∧U1(x))→∃y(U2(y)∧ (x < y))), i.e., it

is necessary that whenever x exists instantiating U1, then there must exist an individual as a

whole for x and instantiating U2. �

Although Guizzardi, in 55, does not generalize inseparable part into a new concept that

holds between a non-rigid part and a whole, we create such a distinction in the OntoUML

metamodel by creating the new meta-attribute “isImmutableWhole” in the metaclass Meronymic,

as shown in Fig. 19. Therefore, we will define immutable whole in the following way:

Definition 30 (immutable whole): For every individuals x and y, and Universals U1 and U2:

IW (x,y,U1,U2),♦(ε(x)∧U2(x))∧�((ε(x)∧U2(x))→ (U1(y)∧ (x≤ y))). In other words, it

is necessary that whenever x exists instantiating U2, then y must instantiate U1 and be a whole

for x. �

5.4 Modeling Kripke Structures in Alloy

We represent modality explicitly in the generated Alloy specification. This means that this

specification reifies the notion of an actualist Kripke structure. This is necessary to specify

UFO’s modal axioms, given no notion of modality is built-in in Alloy.

5.4 Modeling Kripke Structures in Alloy 101

By assuming QS5, the modality underlying UFO’s axioms do not point necessarily to a

temporal interpretation. However, in order to facilitate the validation stage, we adopt here a

representation of a Kripke structure in which the worlds represent common sense temporal

snapshots. In our ordinary language, we are able to talk about the current moment, the past, the

possible future, and the facts that could have happened, but, accidentally, did not happened (i.e.,

the counterfactuals). Therefore, we want our worlds to be interpreted as past worlds, future ones,

counterfactual ones or the current one. In order to avoid necessitas per accidens (accidental

necessity), which refers to the “contingent necessity” of some worlds to become past worlds

instead of counterfactual ones, we state that a counterfactual world w0 was possible to happen in

the very same sense that a past world w1 was possible to happen, because when a certain past

world w2 (prior than w0 and w1) was the current world, the worlds w0 and w1 were future worlds

in the very same sense. In other words, there is no quality of some future worlds that constrains

them to become past worlds instead of counterfactual ones. Therefore, the only difference

between past worlds and counterfactual ones is that the first are (accidentally) memories while

the latter are (accidentally) constructions of imagination.

Furthermore, we will represent the actualist Kripke structure for QS5 in Alloy and validate

UFO’s axiom’s in their QS5 form, but we will also categorize the worlds into four disjoint

categories, viz. PastWorld, CurrentWorld, FutureWorld and CounterfactualWorld, ordering them

by a partial order relation of immediate succession. By constraining the world structures in

this way, we will avoid generating instances that cannot present this temporal interpretation.

Furthermore, by taking this approach, the total accessibility relation can be suppressed in the

alloy implementation, because the modal operators of possibility (♦) and necessity (�) will

always take worlds in the set of all worlds (W).

Also, the actualist domain of quantification D(w) is a function mapping a world to a set of

objects taken from a larger set, which could be the one of possibilia D, including all possible

entities (substantial individuals) independently of their actual existence.

Listing 10 shows the modeling of this temporal structure in Alloy. We had to model the

different types of worlds and their respective constraints regarding what types and quantities of

worlds can be accessed by their immediate succession relations (named “next” in Listing 10).

Also, we impose that (i) there cannot be temporal cycles (line 5 of Listing 10); (ii) a world can

be the immediate next moment of at maximum one world (line 6 of Listing 10); and (iii) every

world, excepting the current one, must reach the current world (lines 13, 17 and 21 of Listing

10).

Therefore, we distinguish four pairwise disjoint types of worlds in Alloy: CurrentWorld

5.4 Modeling Kripke Structures in Alloy 102

(which is a singleton representing the current moment), PastWorld (whose instances forms a

linear sequence of past moments, reaching the CurrentWorld), FutureWorld (whose instances

forms a tree in which the root is the CurrentWorld) and CounterfactualWorld (whose instances

forms a tree in which the root is a PastWorld).

Listing 10: Kripke structure in Alloy.

1 module world_structure[World]

2 some abstract sig TemporalWorld extends World{

3 next: set TemporalWorld -- Immediate next moments.

4 }{

5 this not in this.^(@next) -- There are no temporal

cycles.

6 lone ((@next).this) -- A world can be the immediate next

moment of at maximum one world.

7 }

8 one sig CurrentWorld extends TemporalWorld {} {

9 next in FutureWorld

10 }

11 sig PastWorld extends TemporalWorld {} {

12 next in (PastWorld + CounterfactualWorld + CurrentWorld)

13 CurrentWorld in this.^@next -- All past worlds can reach

the current moment.

14 }

15 sig FutureWorld extends TemporalWorld {} {

16 next in FutureWorld

17 this in CurrentWorld.^@next -- All future worlds can

reach the current moment.

18 }

19 sig CounterfactualWorld extends TemporalWorld {} {

20 next in CounterfactualWorld

21 this in PastWorld.^@next -- All counterfactual worlds

can reach the current moment.

22 }

5.5 The Mapping from OntoUML Models to Alloy Specifications 103

5.5 The Mapping from OntoUML Models to Alloy Spec-
ifications

In this section, we present a mapping from OntoUML to Alloy. For exemplification purposes, we

will make references to the Listing 15, which is the Alloy counterpart of the OntoUML model

pictured in Fig. 27.

In philosophy, sortals are entities that are responsible for providing principles of identity

and individuation for its instances (11). Therefore, a rigid sortal is a sortal whose instances

cannot cease to be its instances without ceasing to exist. Furthermore, SubstanceSortals (viz.

Kinds, Collectives and Quantities) are the ultimate rigid sortals that provide the principle of

identity for their instances. Therefore, in Alloy, SubstanceSortals are modeled as top-level

signatures (lines 2, 4 of Listing 15). As top-level signatures, (i) the instances of these classes

are automatically pairwise disjoint, what is suitable because these instances are meant to be

distinct objects carrying distinct identities; and (ii) an instance of a class C is always instance of

C, independently of worlds, what reifies the notion of rigidity (Definition 21).

As we are adopting an actualist domain of quantification, then for every world w there is a

non-empty relation named “domain_of_quantification” (see line 14 of Listing 15) representing

its (non-empty) domain of quantification D(w), which contains a number of (w,ts) tuples in which

ts is a top-level signature.

A SubKind must be (directly or indirectly) a refinement of a Kind, and we represent it in

Alloy by making SubKinds as subsignatures, and using the Alloy keyword “in” followed by the

signature representing its supertype (Definition 4). If there is a GeneralizationSet constraining

some SubKinds to be disjoint (see Definition 6), we declare them with the keyword “extends

” instead of “in” (see line 3 of Listing 15); and if there is a GeneralizationSet constraining

them to be complete (see Definition 5), we declare a signature fact within the signature of the

supertype constraining the set of instances of the supertype to be equal to the union of the sets

of its subtype instances. Finally, if there is a GeneralizationSet constraining the subtypes to

partition the supertype (see Definition 7), then we can substitute the signature fact by the keyword

“abstract” before the supertype signature (as shown in line 2 of Listing 15).

Furthermore, regarding the Classifier meta-attribute isAbstract, from 12, p. 83 and 13, p. 52

we have that:

“If true, the Classifier does not provide a complete declaration and can typically
not be instantiated. An abstract classifier is intended to be used by other
classifiers (e.g., as the target of general metarelationships or generalization

5.5 The Mapping from OntoUML Models to Alloy Specifications 104

relationships). Default value is false.” (12, p. 83),(13, p. 52)

Therefore, whenever an abstract classifier have subtypes, we will model it as its subtypes

form a complete GeneralizationSet. If an abstract classifier C has no subtypes, then there is no

need to model C in Alloy, as it will not be able to have atoms.

Just as Sortal Universals, Moment Universals also provide a principle of identity for their

instances, but this principle is dependent on the principles provided by the Universals they

characterize or mediate, in case of Intrinsic Moment Universals (viz., Quality Universals and

Mode Universals) or Relator Universals, respectively. However, despite differentiating Kinds

and SubKinds, OntoUML makes no distinction between the ultimate Moment Universals and the

Moment Universals that are subtypes of the former, inheriting its unique principle of identity.

Therefore, we will take top-level Moment Universals as ultimate and model them in Alloy as

signatures (line 5 of Listing 15), as we did for Kinds, and the non-top-level ones will be modeled

as subsignatures, just as SubKinds.

Moreover, from 13, p. 61 “A data type is a type whose instances are identified only by their

value.”. Therefore, if a Datatype instance can be identified, then one of its types must provide

a principle of identification for it. So, in the same way as for Moment Universals, we will

take top-level Simple Datatypes as ultimate (being responsible in providing an unique identity

principle for its instances) and model them in Alloy as signatures, and the non-top-level ones

will be modeled as subsignatures.

Regarding Structured Datatypes, they are sets of n-tuples. Thus, it would be reasonable to

model them as relations in Alloy. However, Alloy does not allows the creation of relations of

relations. Therefore, if we model Structured Datatypes as relations, we would have to collapse

high-order instances into flat ones. For example, an instance ((x,y),z) of an Structured Datatype

SD1, which is composed of another Structured Datatype SD2 (which is responsible for the

(x,y) instance) and a Simple Datatype SD3 (which is responsible for the z instance), would be

collapsed into a (x,y,z) instance, which corresponds to a different Structured Datatype SD4,

composed solely by Simple Datatypes.

Moreover, if we model Structured Datatypes as relations, in order to visualize an instance

of a Structured Datatype as an attribute of a Classifier instance, we have to choose a privileged

attribute of the Structured Datatype to be directly related to the Classifier instance, and the other

attributes of the Structured Datatype will appear merely as labels in the relation.

We think that a better approach is to represent the instances of Structured Datatypes as atoms,

in a way that the n-tuples are represented by atoms having relations with the constituents of the

5.5 The Mapping from OntoUML Models to Alloy Specifications 105

n-tuples, which are their attributes. Therefore, we model Structured Datatypes just as Simple

Datatypes, as sets of atoms (i.e., Alloy signatures), but having relations with the Datatypes that

are its attributes. So, if a Classifier has a Structured Datatype as an attribute, the atoms that are

instances of the Classifier will be related to atoms that are instances of the Structured Datatype,

in a way that the latter atoms will also have relations with another atoms representing its own

attributes. This approach solves the visualization problem discussed above, as the Classifier

instances will be related to the atoms that are instances of the Structured Datatypes, instead of

being related to one of the constituents of the Structured Datatypes instances.

However, from 13, p. 61 we have that:

“All copies of an instance of a data type and any instances of that data type with
the same value are considered to be the same instance. Instances of a data type
that have attributes (i.e., is a structured data type) are considered to be the same
if the structure is the same and the values of the corresponding attributes are the
same. If a data type has attributes, then instances of that data type will contain
attribute values matching the attributes.” (13, p. 61)

As we model Simple Datatypes as atoms, those constraints automatically hold for them,

because every atom is considered a distinct instance. Also, regarding Structured Datatypes, if

we model them as relations, those constraints will automatically hold for them too, because, as

n-tuples, their identity will be determined by its constituents. However, as we model Structured

Datatypes as atoms, we have to guarantee that the following constraints will hold:

• The attributes of a StructuredDatatype instance cannot change from world to world.

For example, consider the OntoUML model shown in Fig. 11, which models a

«simpleDatatype» NaturalNumber; a «structuredDatatype» Birthday that has three

NaturalNumber attributes (by means of «datatypeRelationship» relationships), namely

day, month and year; and a «kind» Person that has an attribute age that is a NaturalNumber

and an attribute birthday that is a Birthday. In an instance of this model, a Person John can

change his age attribute from world to world (or time to time, in a temporal interpretation

of worlds), but a (StructuredDatatype) Birthday instance “12/18/1982” (which is the

birthday of John) cannot change its day attribute from 18 to 15, or, more generally, it

cannot change any of its attributes without ceasing to be “12/18/1982”.

• When two StructuredDatatype instances have the same values in its attributes, they have

to be the same instance. For example, again referring to the OntoUML pictured in Fig.

11, when two (StructuredDatatype) Birthday instances α and β have the same attributes

day = 18, month = 12 and year = 1982, they have to be the same “12/18/1982” instance,

5.5 The Mapping from OntoUML Models to Alloy Specifications 106

i.e., there can be at most one atom representing this instance. We name this property

“canonicity”.

In fact, the first constraint is guaranteed by the third additional invariant for the metaclass

DatatypeRelationship, shown in page 70 and formalized in OCL in Listing 68, which constrains

the Datatype Relationships that have StructuredDatatypes in its sources to have the value “true”

in the meta-attribute isReadOnly of the Properties in its targets. Later in this section, we show

how we model relationships that have read-only extremities in Alloy.

Now, we will better define the notion of canonicity in order to facilitate the understanding

of the Alloy counterpart. First of all, SimpleDatatypes are canonical a priori. However, a

StructuredDatatype D is canonical iff D is locally canonical and all its attributes are instances

of Datatypes that are canonical. In other words, a StructuredDatatype D is canonical iff D is

locally canonical and for all Datatype Relationships DR that have D in their source extremity, the

Datatype connected in the target extremity of DR is canonical. Moreover, as all SimpleDatatypes

are canonical, we can further refine this notion: A StructuredDatatype D is canonical iff D is

locally canonical and for all Datatype Relationships DR that have D in their source extremity, if

the Datatype connected in the target extremity of DR is a StructuredDatatype then it is canonical.

Definition 31 (Local Canonicity): By local canonicity we mean that a StructuredDatatype

D is locally canonical iff for every x and y that are instances of D, if x has the same

attributes than y, then x and y are the same instance. We can formalize this notion as

Locally_canonical(D,S1, . . . ,Sn,F), where D is the StructuredDatatype, S1,. . . ,Sn are the

Datatype Relationships that have D in their source extremity, and F is the figure7 function:

Locally_canonical(D,S1, . . . ,Sn,F) , ∀x,y((D(x) ∧ D(y)) → (∧i≤n(∀z(((x,z) ∈ F(Si)) ↔
((y,z) ∈ F(Si))))→ (x = y))) �

In the following, we reformulate our notion of canonicity in a non-recursive manner, in order

to facilitate the formalization. One should notice that the recursive step in the previous definition

of canonicity is used to guarantee that all StructuredDatatypes D8 that are “reachable” from D,

by means of Datatype Relationships, are locally canonical. Therefore, a StructuredDatatype D

is canonical iff D is locally canonical and all StructuredDatatypes D8 that are “reachable” from

D, by means of Datatype Relationships, are locally canonical. This constraint is formalized in

Definition 32.

Definition 32 (Canonicity): A StructuredDatatype D is canonical iff D is locally canonical
7We consider that a finitary relation L is defined by two mathematical objects: the ground of L, notated as G(L),

and the figure of L, notated as F(L). G(L) is a sequence of k nonempty sets, X1,. . . ,Xk, called the domains of the
relation L. F(L) is a subset of the Cartesian product taken over the domains of L, that is, F(L) ⊆ X1× . . .×Xk.
Therefore, L = (F(L),G(L)).

5.5 The Mapping from OntoUML Models to Alloy Specifications 107

and for all Datatypes D8 that are “reachable” from D by means of Datatype Relationships,

if D8 is a StructuredDatatype, then D8 is locally canonical. More formally, a Structured-

Datatype D is canonical iff D is locally canonical and for all the tuples (D,D8) that are

in the figure of the transitive closure of the meta-relation DatatypeRelationship, if D8

is a StructuredDatatype, then D8 is locally canonical. We can formalize this notion as

Canonical((D1,S11, . . . ,S1m1
), . . . ,(Di,Si1, . . . ,Simi

), . . . ,(Dn,Sn1 , . . . ,Snmn
),F), where D1 is the

target StructuredDatatype, Di (i > 1) is a StructuredDatatype from a tuple (D1,Di) contained

in the figure of the transitive closure of the meta-relation DatatypeRelationship, Si1, . . . ,Simi

are the Datatype Relationships that have Di in their source extremity, and F is the fig-

ure function: Canonical((D1,S11 , . . . ,S1m1
), . . . ,(Di,Si1, . . . ,Simi

), . . . ,(Dn,Sn1, . . . ,Snmn
),F) ,

∧i≤nLocally_canonical(Di,Si1, . . . ,Simi
,F) �

One should notice that, from Definitions 31 and 32, if we guarantee that every Structured-

Datatype D in an OntoUML model is locally canonical, then every D will also be canonical. In

fact, this is a necessary and sufficient condition for all StructuredDatatypes to be concomitantly

canonical. Therefore, is sufficient to impose only local canonicity to the StructuredDatatypes in

the Alloy specification.

Let us exemplify the codification of Datatypes in Alloy by using the model shown in Fig.

11. The codification of this model in Alloy is shown in Listing 14. Lines 4 and 5 of Listing 14

shows the modeling of the SimpleDatatype NaturalNumber and the StructuredDatatype Birthday,

respectively. Line 10 of Listing 14 shows the codification of the local canonicity constraint

(Definition 31) in Alloy.

We model subtyping and GeneralizationSets (see Definitions 5, 6, 7) between Datatypes in

the same way as for SubKinds.

As Categories are abstract, their instances are always instances of at least one of their

non-abstract subtypes (otherwise, if they have no non-abstract subtypes, then they must have

no instances at all), and as they are rigid, their instances never cease to be instances of them.

Therefore, if a Category have subtypes (see Definition 4), then it can be modeled as a set that is

the union of the instances of its subtypes. But, if we declare Categories as signatures, they will

be automatically pairwise disjoint from all the other signatures. Therefore, we model a Category

as a nullary function composed of a constant output that is the union of the signatures of all of its

subtypes (see lines 10, 11 and 12 of Listing 15). We model subtyping for Categories by making

the supertype as the union of the subtypes, for example if the Category C1 is the supertype of the

Categories C2, . . . ,Cn, then the function “C1”, representing C1, will be the union of the functions

“C2”, . . . ,“Cn”, as shown in line 1 of Listing 11. If there is a GeneralizationSet (see Definitions

5.5 The Mapping from OntoUML Models to Alloy Specifications 108

5, 6, 7) stating that C2, . . . ,Cn are disjoint, then we create a new fact stating that “C2”, . . . ,“Cn”

are pairwise disjoint, as shown in line 2 of Listing 11.

Listing 11: Modeling Categories.

1 fun C1: univ {C2 + . . . + Cn}

2 fact disjoint_categories {disj [C2,. . .,Cn]}

Also, as Phases, Roles, Mixins and RoleMixins are non-rigid (see Definition 21 for rigidity),

the set of their instances may vary from world to world. Therefore, these classes are modeled

within the “World” signature8 as binary relations from worlds to sortals that are its supertypes

(in the case of Phases and Roles) or its subtypes (in the case of Mixins and RoleMixins) and that

are in the domain of quantification of that world (line 13 of Listing 15). The modeling of Phases

and Roles (the anti-rigid sortals, see Definition 22 for anti-rigidity) is slightly different from the

modeling of Mixins and RoleMixins (the non-sortals). The main difference is that, while Phases

and Roles must be subtypes of sortals, Mixins and RoleMixins can only be supertypes of sortals.

For Phases and Roles, we model subtyping in two ways, regarding the nature of the supertype

(i.e., for a Phase or Role X and another class C, we model that X is a subtype of C in two different

manners, regarding the nature of C). If the superclass is a rigid sortal RS, then we constrain the

set of tuples of the relation representing the subtype (see Definition 4) to be a subset of the set of

tuples of the relation representing the domain of quantification in which the second element is an

instance of RS (see lines 15, 18, 19 and 20 of Listing 15). Otherwise, we declare the range of the

Alloy relation as being the disjunction of the (non-rigid) supertypes, as shown in lines 16 and 21

of Listing 15.

As Mixins and RoleMixins are non-sortal abstract entities, we cannot model them in the

same manner as we do for anti-rigid sortals. Therefore, we model supertyping for Mixins and

RoleMixins in the following way: for a Mixin or RoleMixin X and another classes {C1,. . .,Cn},

we model that X is a supertype of {C1,. . .,Cn} by constraining the range of the Alloy relation

representing X to be the disjunction of the relations or signatures representing {C1,. . .,Cn}.

When Ci is a rigid sortal, then it is represented as a signature Ci, so we will filter the Ci atoms

that are in the domain of quantification of the worlds by using the following Alloy code: Ci

:>domain_of_quantification. Otherwise, we use the name of the Ci relation alone. For

example, consider the line 3 of Listing 12, which models that a Mixin M1 is the supertype of the

Mixin M2 and of the Kind K. We also have to model that every instance of M2 or K is always an

instance of M1. This constraint is shown in line 5 of Listing 12.

8The imported “world_structure” package specializes the World signature on order to build a temporal structure
of worlds (line 1 of Listing 15).

5.5 The Mapping from OntoUML Models to Alloy Specifications 109

Listing 12: Modeling Mixins and RoleMixins.

1 abstract sig World {

2
...

3 M1: set (M2 + K:>domain_of_quantification),

4 }{

5 all x: (M2 + K:>domain_of_quantification) | x in M1

6
...

7 }

Furthermore, in order to model GeneralizationSets of Phases and Roles, if the subclasses

are disjoint (see Definition 5) and all of them have only one supertype, which is the common

supertype, then we declare them together and use the keyword “disj” in the beginning of the line

(see lines 15, 16, 18, 19 and 20 of Listing 15), otherwise, we declare the subclasses separately and

for each disjoint GeneralizationSet we create disj[. . .] facts containing the disjoint subtypes. If

the GeneralizationSets are complete (see Definition 6) and the superclass is not a rigid sortal (if

it is declared as a relation), then we create a signature fact within the signature “World” stating

that the set of tuples of the relation representing the superclass is equal to the union of the set of

tuples of the relations representing the subclasses (see line 28 of Listing 15). If the subclasses

are complete and the superclass is a rigid sortal, then we constrain the domain of quantification

to only contain instances of the superclass that are also instances of at least one subclass (lines

26, 31, 33 and 35 of Listing 15).

Moreover, in order to model disjoint GeneralizationSets of Mixins or RoleMixins, if the

subclasses are disjoint (see Definition 5) and all of them have the same set of subtypes, then

we declare them together and use the keyword “disj” in the beginning of the line (see line

3 of Listing 13). For example, Listing 13 models that a Mixin M1 is the supertype of the

Mixins M1 and M2, which are the supertypes of a Kind K. Otherwise, we declare the subclasses

separately and for each disjoint GeneralizationSet we create disj[. . .] facts containing the

disjoint subtypes. Finally, there is no need to model complete GeneralizationSets of Mixins and

RoleMixins, because the modeling of their abstractness guarantees the completness.

Listing 13: Modeling disjoint GeneralizationSets of Mixins or RoleMixins.

1 abstract sig World {

2
...

3 disj M2, M3: set K:>domain_of_quantification ,

4 M1: set (M2 + M3),

5.5 The Mapping from OntoUML Models to Alloy Specifications 110

5 }{

6 all x: (M2 + M3) | x in M1

7 all x: K:>domain_of_quantification | (x in M1) and (x in

M2)

8
...

9 }

Furthermore, Phases are always defined in a partition set (see Definition 7) ‹P1, . . . ,Pn›

constraining a sortal S (11, p. 103, formulæ 9, 10), and it is always possible (in the modal sense)

for an instance x of S to become an instance of each Pi (i ∈ 1, . . . ,n) (11, p. 104) (Definition 9).

Therefore, for any world w, if x is an instance of S in w, then x must be an instance of exactly

one Phase of S in w and for each Phase Pi of S, there must exist a world in which x is an instance

of Pi. In lines 27, 29, 32, 34 and 36 of Listing 15 we show how we model the last constraint.

Observe that these two last constraints (defined jointly in Definition 9) together imply anti-

rigidity. Therefore, there is no need to model anti-rigidity constraints for Phases. However,

we have to model anti-rigidity for Roles, but only for the ones that are not subtypes of another

Roles or Phases. Because, from the Definition 22, when anti-rigidity is guaranteed for a class,

then it is automatically guaranteed for all its subtypes. In other words, we only have to model

anti-rigidity for the top level Roles. As in our running example all the Roles are subtypes of

Phases, then there is no need to explicitly model anti-rigidity for them. However, for the sake of

completeness, we show how we would model anti-rigidity in the commented lines 30 and 37 of

Listing 15.

Regarding RoleMixins, their anti-rigidity is guaranteed by the anti-rigidity of their sortal

subtypes. Because, (i) as RoleMixins are abstract, all of their instances are instances of at least

one of their subtypes; and (ii) only anti-rigid classes can be subtypes of RoleMixins. Therefore,

there is no need to pose a constraint to guarantee the anti-rigidity of the RoleMixins in the Alloy

specifications.

We model OntoUML relationships in different forms regarding their modal implications.

If an OntoUML binary relationship imply existential dependence (see Definition 22) from a

rigid sortal RS to another Classifier, i.e., if it is a Characterization, a Mediation, a Meronymic

(viz. componentOf, memberOf, subCollectionOf or subQuantityOf) in which the values of

the meta-attributes essential (see Definition 24) or inseparable (see Definition 28) are “true”,

or a DatatypeRelationship with a read-only target (an attribute of a StructuredDatatype, for

example), then it is modeled as an Alloy relation within the “RS” signature (see lines 6, 7, and 8

of Listing 14; and lines 6 and 7 of Listing 15). If both extremities of a Meronymic relationship

5.5 The Mapping from OntoUML Models to Alloy Specifications 111

are existentially dependent on each other (i.e., if the relationship is essential and inseparable), we

model the relationship within the signature of the part add a signature fact in order to constrain

the cardinality regarding the whole. Additionally, we have to create a signature fact within

“World” to guarantee that if an instance a is existentially dependent on another instance b, then

for each world w, if a ∈ D(w), then b ∈ D(w) (see line 38 of Listing 15).

Otherwise, the OntoUML relationships are modeled as ternary relations within the “World”

signature. Thus, for each of these OntoUML relationships, different sets of tuples will exist

in each world (see lines 14 and 15 of Listing 14). Additionally, if an OntoUML relationship

R imply existential dependence from a non-rigid sortal NRS to another Classifier C, i.e., if it

is a Meronymic relationship R in which the values of the meta-attributes isImmutablePart (see

Definition 25) or isImmutableWhole (see Definition 30) are “true”, or a DatatypeRelationship

with a read-only target, then we have to pose an additional constraint to guarantee that if an

instance rs1 ∈ D(w) is such that rs1::NRS9 in w and rs1 is related to an instance rs2 ∈ D(w) (such

that rs2::C in w) by an instance r of R in w, then in whatever world w8 in which rs1 ∈ D(w8) and

rs1::NRS, then rs2 ∈ D(w8) and rs2::C and rs1 must be related to rs2 by an instance r8 of R in w8

(see lines 39 and 40 of Listing 15), as stated in the Definitions 25 and 30.

Listing 14: The Alloy specification generated for the OntoUML model pictured in Fig. 11.

1 open world_structure[World]

2

3 sig Person {}

4 sig NaturalNumber {}

5 sig Birthday {

6 day: one NaturalNumber ,

7 month: one NaturalNumber ,

8 year: one NaturalNumber ,

9 }{

10 all x,y: Birthday | ((x.@day = y.@day) and (x.@month =

y.@month) and (x.@year = y.@year)) implies (x = y)

11 }

12 abstract sig World {

13 domain_of_quantification: some (Person),

14 age: set NaturalNumber one -> set Person:>

domain_of_quantification ,

15 birthday: set Birthday one -> set Person:>

9The symbol a::A means that a is an instance of A.

5.5 The Mapping from OntoUML Models to Alloy Specifications 112

domain_of_quantification ,

16 }{

17 all x:Person:>domain_of_quantification | #age.x = 1

18 all x:Person:>domain_of_quantification | #birthday.x = 1

19 }

Subtyping, abstractness and GeneralizationSets between OntoUML relationships are

modeled similarly as for non-rigid sortals, the only difference is that we will deal with ternary

Alloy relations instead of binary ones. Regarding cardinalities, the Alloy language has some

keywords for the most usual cardinalities, like “set”, “lone”, “one” and “some” meaning “0..*”,

“0..1”, “1..1” and “1..*” respectively. In order to model single-tuple cardinalities of relationships,

we can use these keywords on the declaration of a relation, as shown in lines 6, 7, 8, 14 and 15 of

Listing 14, and also in the lines 22, 23 and 24 of Listing 15. In the case the relationship is declared

within a signature that is its first domain (like the ones in lines 6 and 7 of Listing 15), then we

may have to include a signature fact in order to constrain the cardinality of its first extremity, as

show in lines 41 and 42 of Listing 15. In order to model general “m..n” cardinalities, we can

use the dot operator “.” to navigate to a relation’s extremity and the cardinality operator “#” to

constrain the size of the set of elements in that extremity by writing inequalities. For example,

if a relation R between A and B has an “m..n” cardinality constraint on the extremity B, we

would write a fact like “all a:A:>domain_of_quantification | (#(a.R)>= m)and (#(

a.R)<= n)” (see lines 17 and 18 of Listing 14). In order to model multiple-tuple cardinalities

of a relationship R, one shall consider unfolding R in a Material Association, a Relator, some

Mediation relationships and a Derivation relationship (11) (see Fig. 27), so every cardinality

constraint will be treated as single-tuple.

Please note that we model no null minimum cardinality or “infinity” maximum cardinality

(commonly represented as “*”). We decide to not model these cardinalities as they represent

unconstrained minimum or maximum cardinalities. Also, although minimum cardinalities of

“*” are theoretically possible, the Alloy Analyzer cannot handle them because it works with a

limited number of atoms (see section 2.3 of chapter 2).

Regarding the shareability of Meronymic relationships, from the Definition 20, one can

conclude that the only implication of setting the value of the meta-attribute isShareable to “false”

in a relationship R is that the cardinality on the side of the whole must be exactly one. Therefore,

non-shareability can be modeled solely by modeling cardinality constraints.

In order to model an n-ary Material Association M (whose tuples are in C1× . . .×Cn), we

model the Derivation and the Mediations within the signature of the respective Relator R (lines

5.6 A Case Study for the Transformation: Validating an OntoUML Model 113

6, 7 and 8 in Listing 15), and model M within the signature “World” (lines 22 in Listing 15). As

Alloy is a first order language, then it does not allow the creation of tuples containing tuples.

Therefore the Derivation relation will not be modeled as a relation between instances of R and

M. Instead, we model it as an (n+1)-ary relation whose tuples are in R×C1× . . .×Cn. We also

constrain M (by means of a signature fact) in a way that for any world w, M is a subset of the set

of Derivations of all the instances of R that are in D(w) (line 43 of Listing 15).

Since the most fundamental criteria for individuation are spatiotemporal and constrain

instances of Sortal Universals to move on spatiotemporally continuous paths (68), we further

constrain the generation of instances to produce only examples in which atoms have continuous

existence, i.e., from the point o view of a world w, if we have a world w8 in w’s past and a world

w88 in w’s future, it is not possible that an atom is in D(w8) and in D(w88), but not in D(w). This

constraint is posed in line 46 of Listing 15.

Moreover, as the accessibility relation is total in QS5, then the modal operators of possibility

(♦) and necessity (�) will take worlds in the set of all worlds (W). Thus, in order to reduce the

the computational complexity of analyzing the Alloy specification, we will modify the definitions

of these modal operators to use W instead of the accessibility relation. For the same reasons, we

will constrain every atom to be in the domain of quantification of some world, otherwise, Alloy

Analyzer could generate atoms that would not be shown. This constraint is shown in line 47 of

Listing 15.

The entire transformation presented in this section is implemented in ATL and is shown in

appendix B.

5.6 A Case Study for the Transformation: Validating an
OntoUML Model

In this section we will create a case study for the mappings from OntoUML to Alloy described

in section 5.5 and their implementation in form of an ATL transformation, which is described in

appendix B. Our case study will be based on the OntoUML model depicted in Fig. 27 (from

section 4.6.4).

The Alloy specification automatically generated for the OntoUML model shown in Fig. 27

by the ATL transformation is shown in Listing 15.

Listing 15: The Alloy specification obtained automatically from the OntoUML model pictured

in Fig. 27 by our ATL transformation (see appendix B).

5.6 A Case Study for the Transformation: Validating an OntoUML Model 114

1 open world_structure[World]

2 abstract sig Person {}

3 sig Man , Woman extends Person {}

4 sig Heart , Brain , Organization {}

5 sig Enrollment{

6 student: one Person ,

7 school: one Organization ,

8 derived_study: student one -> one school

9 }

10 fun BiologicalOrgan: (Heart + Brain) {

11 Heart + Brain

12 }

13 abstract sig World {

14 domain_of_quantification: some (Person + Heart + Brain +

Organization + Enrollment),

15 disj LivingPerson , DeceasedPerson: set Person:>

domain_of_quantification ,

16 disj Adult , Child , Teenager: set LivingPerson ,

17 Student: set LivingPerson ,

18 disj FunctionalHeart , NonfunctionalHeart: set Heart:>

domain_of_quantification ,

19 disj FunctionalBrain , NonfunctionalBrain: set Brain:>

domain_of_quantification ,

20 disj ActiveOrganization , ExtinctOrganization: set

Organization:>domain_of_quantification ,

21 School: set ActiveOrganization ,

22 study: set Student some -> some School ,

23 c1: set FunctionalBrain one -> one LivingPerson ,

24 c2: set FunctionalHeart one -> lone LivingPerson

25 }{

26 Person:>domain_of_quantification = LivingPerson +

DeceasedPerson

27 all x: Person | some w0,w1: World | (x in

w0.@LivingPerson) and (x in w1.@DeceasedPerson)

28 LivingPerson = Adult + Child + Teenager

5.6 A Case Study for the Transformation: Validating an OntoUML Model 115

29 all x: LivingPerson | some w0 ,w1 ,w2: World | (x in

w0.@Child) and (x in w1.@Teenager) and (x in

w2.@Adult)

30 --all x: Student | some w: World | (x in

w.@domain_of_quantification) and (x not in w.@Student)

31 Heart:>domain_of_quantification = FunctionalHeart +

NonfunctionalHeart

32 all x: Heart | some w0,w1: World | (x in

w0.@FunctionalHeart) and (x in w1.@NonfunctionalHeart

)

33 Brain:>domain_of_quantification = FunctionalBrain +

NonfunctionalBrain

34 all x: Brain | some w0,w1: World | (x in

w0.@FunctionalBrain) and (x in w1.@NonfunctionalBrain

)

35 Organization:>domain_of_quantification =

ActiveOrganization + ExtinctOrganization

36 all x: Organization | some w0 ,w1: World | (x in

w0.@ActiveOrganization) and (x in

w1.@ExtinctOrganization)

37 --all x: School | some w: World | (x in

w.@domain_of_quantification) and (x not in w.@School)

38 all x: Enrollment:>domain_of_quantification | x.school

in School and x.student in Student

39 all x: Person , w0, w1: (@c1.x).Brain | (w0.@c1).x = (

w1.@c1).x -- immutablePart.

40 all x: Brain , w0, w1: (@c1.Person).x | x.(w0.@c1) = x.(

w1.@c1) -- immutableWhole.

41 all x: Student | some (student.x):>

domain_of_quantification

42 all x: School | some (school.x):>

domain_of_quantification

43 study = (Enrollment:>domain_of_quantification).

derived_study

44 }

5.6 A Case Study for the Transformation: Validating an OntoUML Model 116

45 fact additional_facts {

46 all w: World , x: (@next.w).domain_of_quantification | (x

not in w.domain_of_quantification) => (x not in ((w.^

next).domain_of_quantification))

47 all x: (Person + Heart + Brain + Organization +

Enrollment) | some w: World | x in

w.domain_of_quantification

48 }

49 run{}

5.6.1 Generating Instances

In this subsection, we show the automatic generation of instances by the Alloy Analyzer tool.

Fig. 35 depicts an instance of Listing 15 that is automatically generated by the Alloy Analyzer

tool.

Figure 35: An instance for the Alloy specification depicted in Listing 15.

Although valid from a logic point of view, these automatically generated presentations are

not suitable to be inspected and reasoned upon by the human modeler. Fortunately, the Alloy

Analyzer allows the creation of visualization themes (66). Here, we take advantage of this

feature by providing two visualization themes, one for visualizing the temporal ordering of

worlds (shown in Listing 117 in appendix E) and the other to visualize the atoms by projecting

them in each world (shown in Listing 118 in appendix E).

By applying these themes on the instance shown in Fig 35, we get Fig. 36. Fig. 36a shows

the generated temporal ordering of worlds and Figs. 36b and 36c shows the atoms that are in the

domain of quantification of each world.

As one can see, despite being a valid instance, the instance shown in Fig. 36 is of little

5.6 A Case Study for the Transformation: Validating an OntoUML Model 117

(a) The tempo-
ral ordering of
worlds.

(b) Instance at the past
moment.

(c) Instance in the
current moment.

Figure 36: Application of visualization themes on the instance shown in Fig. 35.

interest, as it only shows an active organization becoming an extinct organization in the current

world.

The Alloy Analyzer creates first the simpler instances (the ones composed of fewer atoms)

and then it reaches complex ones, by increasing the number of atoms per instances. Therefore,

instead of visualizing every instance generated by the tool, in order to find representative ones

for validation purposes, we can further qualify the type of instances we want the Alloy Analyzer

to generate. For example, we will impose the generation of an instance having a person in at

least one world, two disjoint hearts, at least one world in which there is a school, and one of each

type of worlds (viz. past, counterfactual, current or future). This constraint is shown in Listing

16 and the generated instance is shown in Fig. 37.

Listing 16: Constraining the generation of instances.

1 run {

2 (#Person = 1) and (#Heart = 2) and (#School >= 1) and (

#CounterfactualWorld = 1) and (#PastWorld = 1) and (

#FutureWorld = 1)

3 } for 4

After applying the themes in the instance shown in Fig. 37, we get the Figs. 38, which

shows the temporal ordering of worlds, and 39, which shows the atoms that are in the domain of

quantification of each world. In Fig. 39, the application of the theme shown in Listing 118 in

appendix E makes the instances of the Kinds Brain or Heart to be represented as trapeziums, the

instances of the Kind Person to be represented as ellipses, the instances of the Kind Organization

to be represented as rectangles and the instances of the Relator Enrollment to be represented as

hexagons. Also, instantiation of Categories (e.g., BiologicalOrgan), Phases (e.g., LivingPerson,

DeceasedPerson, Child, Teenager, Adult, ActiveOrganization, ExtinctOrganization, Functional-

Brain, NonfunctionalBrain, FunctionalHeart and NonfunctionalHeart) and Roles (e.g., Student

and School) are represented as labels.

5.6 A Case Study for the Transformation: Validating an OntoUML Model 118

Fi
gu

re
37

:A
se

co
nd

at
te

m
pt

to
ge

ne
ra

te
a

fe
as

ib
le

in
st

an
ce

.

5.6 A Case Study for the Transformation: Validating an OntoUML Model 119

Figure 38: The temporal ordering of worlds.

(a) Instance at the past moment.

(b) Instance in the counterfactual moment.

(c) Instance in the current moment.

(d) Instance in a future moment.

Figure 39: Atoms projected by worlds.

5.6 A Case Study for the Transformation: Validating an OntoUML Model 120

As one can see, in the past world, the woman is deceased, but in the current world she is an

adult, in a counterfactual one she could be a teenager and in a future one she may even become a

child! As OntoUML does not contemplate the explicitly modeling of the temporal ordering of

Phases, we will introduce this ordering directly in the Alloy counterpart specification as a new

fact, as show in the Listing 17.

Listing 17: Modeling the ordering of the Phases.

1 fact an_ordering_for_the_phases{

2 all x:Person , w0: World , w1:w0.next | (x in

w0.DeceasedPerson) => (x not in w1.LivingPerson)

3 all x:Person , w0: World , w1:w0.next | ((x in w0.Child)

=> (x not in w1.Adult)) and ((x in w0.Teenager) => (x

not in w1.Child)) and ((x in w0.Adult) => ((x not in

w1.Child) and (x not in w1.Teenager)))

4 all x:Heart , w0: World , w1:w0.next | (x in

w0.NonfunctionalHeart) => (x not in

w1.FunctionalHeart)

5 all x:Brain , w0: World , w1:w0.next | (x in

w0.NonfunctionalBrain) => (x not in

w1.FunctionalBrain)

6 all x:Organization , w0: World , w1:w0.next | (x in

w0.ExtinctOrganization) => (x not in

w1.ActiveOrganization)

7 }

Now, the generated instances will be well ordered regarding the Phases LivingPerson-

/DeceasedPerson, Child/Teenager/Adult, FunctionalBrain/NonfunctionalBrain, Functional-

Heart/NonfunctionalHeart and ActiveOrganization/ExtinctOrganization. An example is pictured

in Fig. 40, which has the same temporal ordering of worlds that is shown in Fig. 38.

The instance depicted by Figs. 40 and 38 exemplifies some important constraints like the

rigidity (Definition 21) of the Kinds and Categories, e.g., the woman never ceases to be an

instance of the Kind Person while she is in a domain of quantification of a world); the anti-

rigidity (Definition 22) of the Phases, e.g., regarding the Phases Child, Teenager and Adult, for

every world w in which the woman is in one of these Phases, there is a world w8 in which she

is not in that Phase; the anti-rigidity of the Roles, e.g., the Role Student, in which for every

world w in which the woman plays this Role, there is a world w8 in which she does not play

5.6 A Case Study for the Transformation: Validating an OntoUML Model 121

(a) Instance at the past moment.

(b) Instance in the counterfactual moment.

(c) Instance in the current moment.

(d) Instance in a future moment.

Figure 40: Instance with ordered Phases.

5.7 Conclusions 122

this Role; the relational dependence (Definition 22) of the Roles are validated, e.g., for the Role

Student, in which the woman can only play this Role while related to an instance of School by

an instance of Enrollment. Some well known conceptual modeling primitives are also validated,

such as the abstractness for Person (its instances have to be instances of Man or Woman), and

the disjointness and completeness for all Phase partitions.

Also, this instance illustrates the immutability of both part and whole (Definition 25 and 30)

regarding the woman and her brain (she never changes her brain while alive and the brain never

changes its whole when functional), depicted by the “{immutable part, immutable whole}” tag

in the relationship between Person and Brain (Fig. 27). One can notice that in a future world, the

woman will change her heart (maybe she will undergo a heart transplant), while her old heart

will became nonfunctional. This behaviour is totally acceptable, as she is generically dependent

on the Kind Heart.

Finally, this instance also satisfies the constraint that imposes that if an atom instantiates a

Phase in some world, then it must possibly instantiate every Phase in that Phase partition.

5.7 Conclusions

In this chapter, in section 5.1 we exemplify the importance of a tool for generating instances in

the validation phase, when the modeler can detect unintended behaviours and then correct the

model.

Our approach is based on the transformation of OntoUML models into Alloy specifications.

As shown is section 5.2, the product of this transformation is an Alloy specification that can be fed

into the Alloy Analyzer to generate instances that respect UFO’s (modal) axioms. Furthermore,

we believe that the analysis of a well-chosen set of these instances can improve the modeler’s

confidence in the validity of the model.

In section 5.3, in order to facilitate the understanding of the dynamics of creation and

destruction of OntoUML instances within worlds, we revisit the possibilist formalization of some

OntoUML and UFO concepts (11, 55) in an actualist quantified modal logic QS5 with a varying

domain of quantification.

In section 5.4, we define our Kripke structure and give it a superficial temporal meaning by

classifying the worlds into four disjoint categories, viz. CurrentWorld, PastWorld, FutureWorld

and CounterfactualWorld, and creating a partial order relation “next” between them, as well

as some constraints to guarantee that the ordering between worlds will be a temporal one. In

5.7 Conclusions 123

Listing 10, we show how this structure was modeled in Alloy.

In section 5.5 we explain how we map OntoUML Classes, Relations, Datatypes,

Generalizations and GeneralizationSets to Alloy by mapping the definitions elaborated in section

5.3 to Alloy modeling patterns.

Finally, in section 5.6 we create a case study for the mappings from OntoUML to Alloy

described in section 5.5. By transforming the model depicted in Fig. 27 to an Alloy specification,

we show our ATL transformation in action, using many of the mappings described in section 5.5.

Also, we show an instance that exemplifies some very important concepts of OntoUML, like

rigidity (Definition 21), anti-rigidity (Definition 22), etc., as well as some well known conceptual

modeling primitives, such as disjointness and completeness (Definitions 5, 6 and 7).

124

6 Discussion & Final
Considerations

In this chapter, we pose our original contributions (section 6.1), a list of publications that resulted

from the present work (section 6.2), some difficulties we had along our research (section 6.3),

some related work (section 6.4), final considerations (section 6.5), and the future work (section

6.6).

6.1 Original Contributions

Throughout this thesis, we have defined the abstract syntax of OntoUML in Ecore (section 4.2),

formalized all the OntoUML syntactical constraints in OCL (appendix A), defined the OntoUML

concrete syntax by using GMF technologies (section 4.4) and built a graphical editor that is

capable of automatic checking of the OntoUML syntax constraints and automatic derivation of

information from the models (section 4.5).

We also modeled a Kripke structure in Alloy (section 5.4), built a mapping from OntoUML

models to Alloy specifications (section 5.5), and implemented this mapping as an automatic

ATL transformation (appendix B), so one can automatically generate model instances in order to

validate OntoUML models.

Therefore, we believe that the primary contribution of the present thesis is to build a graphical

editor for OntoUML that:

• Allows the creation of conceptual models and ontologies graphically, in a simple way;

• Automatically verifies models (i.e., check the OntoUML syntax constraints in models),

when suitable;

• Allows the modeler to start syntactic checks manually, when he/she deems suitable;

• Informs the reason why a model is syntactically invalid in a way the modeler understands

what is wrong, so he/she can figure out how to fix it;

6.2 Publications 125

• Automatically derives information from the models in specific contexts, saving the user

from modeling information that could be automatically inferred;

• Allows the generation of model instances with the purpose of improving the modeler’s

confidence in the validity of the model.

As secondary contributions, we have produced the following MDE artifacts:

• An OntoUML metamodel in Ecore, with derived meta-relations implemented as OCL

expressions;

• A set of OCL expressions formalizing the automatic initialization or modification of some

meta-attributes’ values, e.g., OCL expressions for the calculation of the values of the upper

cardinality constraint for both association ends of Material Associations and the lower and

upper cardinality constraints of the source association end of Derivation relationships (11,

p. 331, Figs. 8-10);

• A set of OCL expressions formalizing the OntoUML syntactical constraints;

• A GMF definition of the OntoUML concrete syntax;

• An actualist logical formalization of some UFO concepts;

• A categorization of worlds in a common sense temporal structure;

• An Alloy specification of the QS5 world structure with our defined temporal types and

ordering;

• A transformation specification from OntoUML models to Alloy specifications.

6.2 Publications

The research documented in this thesis is also reported in a series of articles. The model building

and verification capabilities of the OntoUML Editor, as well as its architecture, are reported in

69.

Moreover, the tool for assisting model validation, its architecture and transformation patterns

are reported in 70, 71, 72, 73.

6.3 Difficulties 126

6.3 Difficulties

The main difficulties during the development of this thesis were due to the scarcity and low

quality of the EMF and GMF documentation, and the instability of those Eclipse plug-ins. The

GMF tutorials are extremely simplistic, which makes arid their use in robust projects.

The transformations realized in the Ecore metamodel for the generation of Java code were

not capable of generating a functional graphical editor for OntoUML. Therefore, a lot of essential

functionalities had to be implemented directly in Java, which was an arduous task, mainly due

to the almost inexistence of documentation regarding the Java code generated by the EMF and

GMF frameworks.

Another difficulty occurred in the OCL specification of the EOperations and derived

EAttributes and EReferences in the Ecore OntoUML metamodel, because the EMF framework

does not have a native support for the OCL language, being necessary the use of JET templates

to enable the parsing of OCL expressions. Therefore, no syntactical verification is done during

the specification of OCL expressions, no debug message is shown and faults in these expressions

can only be detected after the realization of all the EMF and GMF transformations, by running

the OntoUML Editor.

Also, files that should be always synchronized are constantly not synchronized, which leads

to errors that are not alerted by the Eclipse plug-ins. An example is the synchronization of Ecore

and Genmodel files.

As stated in section 4.5.1, the Bug 138179 (60) frustrated a lot the development of OntoUML

Editor. Due to this bug, in order to be able to automatically create the visualizations of the

Properties connected to a relationship (for example, cardinalities and role names), we had to

include additional meta-attributes and meta-relations in the OntoUML metamodel as well as to

customize the Java code generated by the EMF and GMF plug-ins.

Finally, we had no difficulties using the ATL Eclipse plug-in, as the ATL documentation is

very rich and its Eclipse plug-in is stable. The same is valid for the Alloy documentation and the

Alloy Analyzer tool.

6.4 Related Work

As far as we know, there is no other tool that supports the construction of syntactically correct

OntoUML models. However, there are other editors that support philosophically well-founded

6.4 Related Work 127

languages and methodologies such as OntoClean (74, 75), as well as tools based on upper-level

ontologies as Suggested Upper Merged Ontology1 (SUMO), Standard Upper Ontology2 (SUO)

and the Differential Semantics theory. For instance, Protégé (76) is a free open-source tool

that supports OntoClean and SUMO. Automatic Evaluation of ONtologies3 (AEON) is an

open-source tool, which allows applying OntoClean to evaluate ontologies. Visual Ontology

Modeler (77) is an editor that includes a library of ontologies that represent SUO. Differential

Ontology Editor4 (DOE) is a freeware ontology editor that allows the user to build ontologies

according to the Differential Semantics theory. Sigma (78) is a free open-source knowledge

engineering environment for theories in FOL, which is optimized for SUMO.

Regarding model validation, several approaches in literature aim at assessing whether

conceptual models comply with their intended conceptualizations. Although many approaches

(e.g., (79) and (80)) focus on analysis of behavioural UML models, we are primarily concerned

with structural models and thus refrain further analysis of behavioural-focused work.

A prominent example is the UML Specification Environment5 (14) (USE) tool. The tool

is able to indicate whether instances of a UML class diagram respect constraints specified

in the model through OCL. Differently from our approach, which is based on the automatic

creation of example world structures, in USE the modeler must specify sequences of snapshots

in order to gain confidence on the quality of the model (either through the user interface or

by specifying sequences of snapshots in a tool-specific language called A Snapshot Sequence

Language (ASSL)). Since no modal meta-property of classifiers is present in UML, this tool

does not address modal aspects and validates constraints considering only a sole snapshot.

Finally, the approaches of 81 and 826 are similar to ours in that they translate UML class

diagrams to Alloy. However, both of them translate all classes into Alloy signatures, which

suggests that no dynamic classification is possible in these approaches. Similarly to our approach,

Anastasakis et al. in 82 implements a model transformation using model-driven techniques to

automatically generate Alloy specifications, while 81 relies on manual translation to Alloy.

Similar to USE, 81 focuses on analysis and constraint validation on single snapshots. 82

introduces a notion of state transition but still does not address the modal aspects of classes since

those are not part of UML.

1http://www.ontologyportal.org.
2http://suo.ieee.org.
3http://ontoware.org/projects/aeon.
4http://homepages.cwi.nl/~troncy/DOE.
5http://www.db.informatik.uni-bremen.de/projects/USE.
6The UML2Alloy tool is available at http://www.cs.bham.ac.uk/~bxb/UML2Alloy.

6.5 Final Considerations 128

6.5 Final Considerations

The need for using ontologically well-founded languages for conceptual modeling, in general, and

domain ontologies, in particular, has increasingly been recognized in the literature. This is often

a result of interoperability concerns and the unsuitability of lightweight representation languages

in addressing these issues. Despite that, those languages are still not broadly adopted in practice.

One of the main reasons is the need for high-level expertise in handling the philosophical concepts

underlying them. Indeed, the dissemination of formal method techniques requires convincing

industries and standardization bodies that such techniques in fact can improve development. In

this way, design support tools are one of the key resources to foster their adoption in practice

(83).

In this thesis, we present an Eclipse-based graphical editor that aims at fulfilling the gap

of tool support for one particular theoretically well-founded representation language, namely,

OntoUML. Underlying this editor there is an implementation of the OntoUML metamodel

proposed in 11 by using MDA technologies, in particular, the OMG MOF and OCL. Moreover,

by representing UFO’s categories and axiomatization in the language metamodel, the complexity

of these foundational issues is hidden from the user while still constraining him to produce

ontologically sound models.

Furthermore, regardless of the (lack of) ontological commitment of the modeling language,

a mature approach to conceptual modeling requires modelers to gain confidence on the quality

of the models they produce, assessing whether those models express as accurately as possible an

intended conceptualization. This thesis contributes to that goal, by providing tools to support the

validation of the modal properties of a conceptual model in OntoUML.

Following a model-driven approach, we have defined and automated a transformation of

OntoUML models into Alloy specifications. The generated Alloy specifications are fed into the

Alloy Analyzer to create temporal world structures that show the possible dynamics of object

creation, classification, association and destruction as defined in the model. The snapshots in

this world structure confront a modeler with states-of-affairs that are deemed admissible by the

model. This enables modelers to detect unintended states-of-affairs and take the proper measures

to rectify the model. We believe that the example world structures support a modeler in the

validation process, especially since it reveals how state-of-affairs evolve in time and how they

may eventually evolve (revealing alternative scenarios implied by the model).

As a final remark, the promotion of a language such as OntoUML for domain engineering

does not eliminate the need for codification languages such as Web Ontology Language (10)

6.6 Future Work 129

(OWL), DLRus (84), Alloy or Frame Logic (5) (F-Logic), to cite just a few examples. In pace

with the meaning independence principle defended by Guizzardi and Halpin (85), we adopt the

view that those classes of languages are (and should be) meant to be used for different purposes

and in different phases on an ontology engineering process.

6.6 Future Work

As future work, we aim at performing empirical studies about (i) the tool usability, and (ii) the

effectiveness of this approach of validation based on simulations, taking into account scalability

issues.

Moreover, we intend to incorporate support for domain constraints in our approach, e.g.,

including OCL constraints in an OntoUML model. This will require (i) an extension on

the OntoUML syntax verification method implemented in the editor in order to include the

verification of the OCL syntactical constraints, and (ii) transforming those OCL constraints

into Alloy specifications, in order to guarantee that the constraints are satisfied in all instances

generated by the Alloy Analyzer tool.

Further, we intend to work on methodological support for the validation process, proposing

guidelines for modelers to select relevant world structures. We will aim for an interactive

approach in which a modeler can select which of the alternative scenarios to consider. We believe

that this may help pruning the branches in the world structure keeping the size of this structure

manageable.

Ideally, by exploring visualization techniques, we could use the instances generated by the

Alloy Analyzer as example scenarios to be exposed to the stakeholders of the conceptual model

(such as domain experts) in order to validate whether their conceptualization has been captured

accurately by the modeler.

130

Bibliography

1 BÉZIVIN, J.; JOUAULT, F.; ROSENTHAL, P.; VALDURIEZ, P. Modeling in the large
and modeling in the small. In ASSMANN, U.; AKSIT, M.; RENSINK, A. (Ed.). MDAFA.
Springer, 2004. (Lecture Notes in Computer Science, vol. 3599), p. 33–46. ISBN 3-540-28240-8.
Available from Internet: <http://dx.doi.org/10.1007/11538097 3>. Cited 01/13/2010. xx, 16

2 JOUAULT, F.; ALLILAIRE, F.; BÉZIVIN, J.; KURTEV, I.; VALDURIEZ, P. ATL: a
QVT-like transformation language. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications. New
York, NY, USA: ACM, 2006. p. 719–720. ISBN 1-59593-491-X. Available from Internet:
<http://doi.acm.org/10.1145/1176617.1176691>. Cited 10/04/2009. xx, 16, 17

3 DEAN, D.; GERBER, A.; MOORE, B.; VANDERHEYDEN, P.; WAGENKNECHT,
G. Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling
Framework. IBM Redbooks, 2004. 250 p. ISBN 0738453161. Available from Internet:
<http://www.redbooks.ibm.com/abstracts/sg246302.html>. Cited 08/17/2009. xxi, 4, 18, 19,
20, 59

4 Meta-Object Facility (MOF) Core Specification, Version 2.0. [S.l.], January 2006. 76 p.
Available from Internet: <http://www.omg.org/spec/MOF/2.0>. Cited 08/17/2009. xxi, xxii, 3,
12, 13, 18

5 KIFER, M.; LAUSEN, G.; WU, J. Logical foundations of object-oriented and frame-based
languages. Journal of the Association for Computing Machinery (ACM), vol. 42, p. 741–843,
1990. xxi, 129

6 Institut national de recherche en informatique et en automatique (INRIA). KM3: Kernel
MetaMetaModel Manual version 0.3. Nantes, France, August 2005. xxii, 17

7 MILLER, J.; MUKERJI, J. (Ed.). MDA Guide Version 1.0.1. [S.l.], June 2003. 62 p. Available
from Internet: <http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf>. Cited 08/17/2009. xxii,
xxiii, 3, 11

8 Object Constraint Language, Version 2.0. [S.l.], May 2006. 232 p. Available from Internet:
<http://www.omg.org/spec/OCL/2.0>. Cited 08/17/2009. xxii, 4, 12, 13

9 FIRESMITH, D.; HENDERSON-SELLERS, B.; GRAHAM, I. OPEN modeling language
(OML) reference manual. New York, NY, USA: Cambridge University Press, 1998. ISBN
0-521-64823-8. xxii, 50

10 World Wide Web Consortium (W3C). OWL Web Ontology Language Guide. Available from
Internet: <http://www.w3.org/TR/owl-guide>. Cited 08/20/2009. xxii, 128

Bibliography 131

11 GUIZZARDI, G. Ontological foundations for structural conceptual models. Thesis (Ph.D.)
— University of Twente, Enschede, The Netherlands, Enschede, October 2005. Available from
Internet: <http://doc.utwente.nl/50826/>. Cited 01/13/2009. xxiii, 2, 4, 5, 6, 10, 27, 28, 29, 30,
33, 34, 35, 36, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 54, 59, 62, 64, 69, 75, 87, 88, 96, 97, 99,
103, 110, 112, 122, 125, 128, 138, 139, 159, 165

12 OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.2. [S.l.], February
2009. 226 p. Available from Internet: <http://www.omg.org/spec/UML/2.2/Infrastructure>.
Cited 08/17/2009. xxiii, 2, 13, 30, 31, 103, 104

13 OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.2.
[S.l.], February 2009. 740 p. Available from Internet: <http://www.omg.org/spec/UML-
/2.2/Superstructure>. Cited 08/17/2009. xxiii, 2, 30, 31, 32, 53, 70, 103, 104, 105,
166

14 GOGOLLA, M.; BÜTTNER, F.; RICHTERS, M. USE: A UML-based specification
environment for validating UML and OCL. Science of Computer Programming Special Issue on
Experimental Software and Toolkits, vol. 69, no. 1-3, p. 27–34, 2007. xxiii, 127

15 MOF 2.0/XMI Mapping, Version 2.1.1. [S.l.], December 2007. 120 p. Available from
Internet: <http://www.omg.org/spec/XMI/2.1.1>. Cited 10/04/2009. xxiii, 11

16 MYLOPOULOS, J. Conceptual modeling, databases, and case: An integrated view
of information systems development. In . Chichester: John Wiley & Sons, 1992. cap.
Conceptual Modeling and Telos, p. 49–68. 1

17 GUIZZARDI, G. On ontology, ontologies, conceptualizations, modeling languages, and
(meta)models. In VASILECAS, O.; EDER, J.; CAPLINSKAS, A. (Ed.). DB&IS. Amsterdam:
IOS Press, 2006. (Frontiers in Artificial Intelligence and Applications, vol. 155), p. 18–39. ISBN
978-1-58603-715-4. 1, 2

18 DEGEN, W.; HELLER, B.; HERRE, H.; SMITH, B. GOL: Toward an axiomatized
upper-level ontology. In Proceedings of the International Conference on Formal Ontology
in Information Systems. Ogunquit, Maine, USA: ACM New York, NY, USA, 2001.
(Formal Ontology in Information Systems, 2), p. 34–46. Available from Internet:
<http://dx.doi.org/10.1145/505168.505173>. Cited 08/17/2009. 2

19 GUARINO, N.; GUIZZARDI, G. In the defense of ontological foundations for conceptual
modeling. Scandinavian Journal of Information Systems, vol. 18, no. 1, p. 115–126, 2006. ISSN
0905-0167. Invited Paper. 2

20 GUIZZARDI, G.; WAGNER, G.; GUARINO, N.; SINDEREN, M. van. An ontologically
well-founded profile for uml conceptual models. In Proceedings of the 16th International
Conference on Advanced Information Systems Engineering (CAiSE). Latvia: Springer-Verlag
Berlin / Heidelberg, 2004. (Lecture Notes in Computer Science (LNCS), Volume 3084/2004), p.
112–126. ISBN 3-540-22151-4. Available from Internet: <http://dx.doi.org/10.1007/b98058>.
Cited 08/17/2009. 2, 27, 34, 80

21 GONÇALVES, B.; GUIZZARDI, G.; PEREIRA.FILHO, J. G. An electrocardiogram
(ECG) domain ontology. In GUIZZARDI, G.; FARIAS, C. (Ed.). Proceedings of the 2nd
Workshop on Ontologies and Metamodels for Software and Data Engineering (WOMSDE),

Bibliography 132

22nd Brazilian Symposium on Databases (SBBD)/21st Brazilian Symposium on Software
Engineering (SBES). João Pessoa, Brazil: [s.n.], 2007. p. 68–81. Available from Internet:
<http://www.lbd.dcc.ufmg.br:8080/colecoes/womsde/2007/006.pdf>. Cited 09/21/2010. 2

22 OLIVEIRA, F.; ANTUNES, J.; GUIZZARDI, R. S. S. Towards a collaboration
ontology. In GUIZZARDI, G.; FARIAS, C. (Ed.). Proceedings of the 2nd Workshop
on Ontologies and Metamodels for Software and Data Engineering (WOMSDE), 22nd
Brazilian Symposium on Databases (SBBD)/21st Brazilian Symposium on Software
Engineering (SBES). João Pessoa, Brazil: [s.n.], 2007. p. 97–108. Available from Internet:
<http://www.lbd.dcc.ufmg.br:8080/colecoes/womsde/2007/008.pdf>. Cited 09/21/2010. 2

23 The Eclipse Foundation. Ecore. Available from Internet: <http://download.eclipse.org-
/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/package-summary.html>. Cited
08/17/2009. 4, 59

24 The Eclipse Foundation. Eclipse. Available from Internet: <http://www.eclipse.org>. Cited
08/17/2009. 4, 17, 18

25 JACKSON, D. Software abstractions : logic, language, and analysis. [S.l.]: MIT Press,
2006. ISBN 978-0-262-10114-1. 4, 22, 24, 25, 26, 95

26 Alloy Community. 2009. Available from Internet: <http://alloy.mit.edu/community>.
Cited 08/17/2009. 4, 22

27 JACKSON, D. Alloy: a lightweight object modelling notation. Transactions on Software
Engineering and Methodology (TOSEM), ACM, New York, NY, USA, vol. 11, no. 2, p.
256–290, 2002. ISSN 1049-331X. 4, 22, 23, 25, 26

28 PRIEST, G. An introduction to non-classical logic. Cambridge: Cambridge University
Press, 2001. 00023609 GBA1-19206 Graham Priest. Includes bibliographical references and
index. 8

29 HUGHES, G. E.; CRESSWELL, M. J. A Companion to Modal Logic. London: Routledge
and Kegan Paul, 1985. 8

30 Stanford Encyclopedia of Philosophy. Available from Internet: <http://plato.stanford.edu-
/entries/actualism/possibilism>. Cited 12/23/2009. 9

31 Stanford Encyclopedia of Philosophy. Available from Internet: <http://plato.stanford.edu-
/entries/actualism>. Cited 12/23/2009. 9

32 FITTING, M.; MENDELSOHN, R. L. First-order modal logic. Norwell, MA, USA:
Kluwer Academic Publishers, 1999. ISBN 0-7923-5334-X. 9

33 SCHMIDT, D. C. Model-driven engineering. IEEE Computer, vol. 39, no. 2, February
2006. Available from Internet: <http://www.truststc.org/pubs/30.html>. Cited 01/13/2010. 10

34 DALGARNO, M.; FOWLER, M. UML vs. Domain-Specific Languages. Martinig
& Associates, vol. 16, no. 2, 2006. ISSN 1661-402X. Available from Internet:
<http://www.methodsandtools.com/mt/download.php?summer08>. Cited 12/23/2009. 11

Bibliography 133

35 REIS, G. D.; JÄRVI, J. What is generic programming? In Proceedings of the First
International Workshop of Library-Centric Software Design (LCSD ’05). An OOPSLA ’05
workshop. [S.l.: s.n.], 2005. 11

36 MAINTAINERS. Available from Internet: <http://www.generic-programming.org>. Cited
12/23/2009. 11

37 STEINBERG, D.; BUDINSKY, F.; PATERNOSTRO, M.; MERKS, E. EMF: Eclipse
Modeling Framework 2.0. [S.l.]: Addison-Wesley Professional, 2009. ISBN 0321331885. 12,
18, 19

38 BÉZIVIN, J.; GÉRARD, S.; MULLER, P. A.; RIOUX, L. MDA components: Challenges
and Opportunities. In . [S.l.: s.n.]. 12

39 Syntropy Limited. Available from Internet: <http://www.syntropy.co.uk/syntropy>. Cited
10/04/2009. 12

40 WARMER, J. B.; KLEPPE, A. G. The Object Constraint Language: Getting Your Models
Ready for MDA. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.
240 p. ISBN 0321179366. 12, 13

41 ATLAS Model Management Architecture (AMMA). Interactive OCL Tutorial. Available
from Internet: <http://atlanmod.emn.fr/atldemo/oclturorial>. Cited 12/24/2009. 14

42 PIERS, W.; FORTIN, T. ATL/User Guide - The ATL Language. Available from Internet:
<http://wiki.eclipse.org/ATL/User Guide - The ATL Language>. Cited 05/20/2010. 16

43 JOUAULT, F.; BÉZIVIN, J. KM3: A DSL for metamodel specification. In Formal Methods
for Open Object-Based Distributed Systems. Bologna, Italy: Springer Berlin / Heidelberg,
2006. (Lecture Notes in Computer Science (LNCS), vol. 4037/2006), p. 171–185. ISBN
978-3-540-34893-1. ISSN 0302-9743 (Print) 1611-3349 (Online). Available from Internet:
<http://dx.doi.org/10.1007/11768869>. Cited 10/04/2009. 17

44 JOUAULT, F.; KURTEV, I. Transforming models with ATL. In Satellite Events at the
MoDELS 2005 Conference: MoDELS 2005 International Workshops OCLWS, MoDeVA,
MARTES, AOM, MTiP, WiSME, MODAUI, NfC, MDD, WUsCAM. Montego Bay, Jamaica:
Springer Berlin / Heidelberg, 2006. (Lecture Notes in Computer Science (LNCS), vol.
3844/2006), p. 128–138. ISBN 978-3-540-31780-7. ISSN 0302-9743 (Print) 1611-3349
(Online). Available from Internet: <http://doi.acm.org/10.1007/11663430>. Cited 10/04/2009.

45 ATLAS Transformation Language (ATL) project. Available from Internet: <http://www-
.eclipse.org/m2m/atl>. Cited 08/17/2009. 17

46 RUSCIO, D. D.; JOUAULT, F.; KURTEV, I.; BÉZIVIN, J.; PIERANTONIO, A. Extending
AMMA for Supporting Dynamic Semantics Specifications of DSLs. LINA, Université de Nantes -
2, rue de la Houssinière - BP 92208 - 44322 NANTES CEDEX 3, April 2006. 20 p. Available
from Internet: <http://hal.archives-ouvertes.fr/docs/00/06/61/21/PDF/rr0602.pdf>. Cited
10/04/2009.

47 The Eclipse Foundation. The Eclipse Modeling Framework (EMF) Overview. Available
from Internet: <http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc-
/references/overview/EMF.html>. Cited 10/05/2009. 18

Bibliography 134

48 GEMMI, T. Available from Internet: <http://www.kriha.de/krihaorg/dload/uni-
/generativecomputing/generation/CodeGenOverview.jpg>. Cited 10/05/2009. 20

49 The Eclipse Foundation. Implementing Model Integrity in EMF with MDT OCL. Available
from Internet: <http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-
OCL/index.html>. Cited 09/04/2009. 19, 78

50 The Eclipse Foundation. Generating an EMF Model. Available from Internet: <http://help-
.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/tutorials/clibmod/clibmod.html>.
Cited 09/04/2009. 20, 78

51 The Eclipse Foundation. The EMF.Edit Framework Overview. Available from Internet:
<http://help.eclipse.org/ganymede/index.jsp?topic=/org.eclipse.emf.doc/references/overview-
/EMF.Edit.html>. Cited 09/04/2009. 20, 78

52 The Eclipse Foundation. GMF Tutorial. Available from Internet: <http://wiki.eclipse.org-
/GMF Tutorial>. Cited 09/01/2009. 21

53 SPIVEY, J. M. The Z notation: a reference manual. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1989. ISBN 0-13-983768-X. 22

54 JACKSON, D. Nitpick: A checkable specification language. In In Proceedings of the First
ACM SIGSOFT Workshop on Formal Methods in Software Practice. San Diego, CA, USA:
[s.n.], 1996. p. 60–69. 25

55 GUIZZARDI, G. Modal aspects of object types and part-whole relations and the de
re/de dicto distinction. In . Advanced Information Systems Engineering. Springer Berlin
/ Heidelberg, 2007. (Lecture Notes in Computer Science (LNCS), vol. 4495/2007), p.
5–20. ISBN 978-3-540-72987-7. Available from Internet: <http://dx.doi.org/10.1007/978-
3-540-72988-4\ 2>. Cited 08/17/2009. 29, 30, 33, 50, 51, 52, 62, 96, 97, 98, 99, 100, 122,
159

56 GUIZZARDI, G.; WAGNER, G.; SINDEREN, M. van. A formal theory of conceptual
modeling universals. In BÜCHEL, G.; KLEIN, B.; ROTH-BERGHOFER, T. (Ed.). Workshop
on Philosophy and Informatics (WSPI), Cologne, Germany, 2004. Deutsches Forchungszentrum
fur Kunstliche Intelligenz, 2004. (CEUR Workshop Proceedings, vol. 112). Available from
Internet: <http://doc.utwente.nl/49866/>. Cited 01/24/2010. 31

57 WHITEHEAD, A. N.; RUSSELL, B. Principia Mathematica. Fetter Lane,
E.C., London, England: Cambridge University Press, 1910. Available from Internet:
<http://name.umdl.umich.edu/AAT3201.0001.001>. Cited 10/04/2009. 41

58 SIMONS, P. M. Parts. An Essay in Ontology. Oxford: Clarendon Press, 1987. 52, 98

59 BENEVIDES, A. B. OntoUML Editor Site. Available from Internet: <http://code.google-
.com/p/ontouml>. Cited 09/08/2009. 78, 89

60 STADNIK, D. Bug 138179 - Allow to define labels based on attributes of referenced
objects. Available from Internet: <http://bugs.eclipse.org/bugs/show%5Fbug.cgi?id=138179>.
Cited 09/08/2009. 79, 126

Bibliography 135

61 Free Software Foundation (FSF). GNU General Public License Version 3 (GPLv3).
Available from Internet: <http://www.fsf.org/licensing/licenses/gpl.html>. Cited 08/31/2009.
79

62 The Eclipse Foundation. Eclipse Public License - v 1.0 (EPLv1.0). Available from Internet:
<http://www.eclipse.org/org/documents/epl-v10.html>. Cited 08/31/2009. 79

63 Wikimedia Foundation, Inc. Copyleft. Available from Internet: <http://en.wikipedia.org-
/wiki/Copyleft>. Cited 01/20/2010. 79

64 The Eclipse Foundation. Eclipse Public License (EPL) Frequently Asked Questions.
Available from Internet: <http://www.eclipse.org/legal/eplfaq.php>. Cited 08/31/2009. 79

65 The Eclipse Foundation. Model Development Tools (MDT). Available from Internet:
<http://www.eclipse.org/modeling/mdt>. Cited 08/17/2009. 88

66 RAYSIDE, D.; CHANG, F.; DENNIS, G.; SEATER, R.; JACKSON, D. Automatic
visualization of relational logic models. In MARGARIA, T.; PADBERG, J.; TAENTZER,
G.; FISH, A.; KNAPP, A.; STORRLE, H. (Ed.). Proceedings of the Workshop on the
Layout of (Software) Engineering Diagrams (LED 2007). Electronic Communications of the
EASST (ECEASST), 2007. Volume X (2007). ISSN 1863-2122. Available from Internet:
<http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/94/89>. Cited 09/21/2010. 94,
116

67 BOWEN, J. P.; BUTLER, R. W.; DILL, D. L.; GLASS, R. L.; GRIES, D.; HALL, A.;
HINCHEY, M. G.; HOLLOWAY, C. M.; JACKSON, D.; JONES, C. B.; LUTZ, M. J.; PARNAS,
D. L.; RUSHBY, J. M.; WING, J. M.; ZAVE, P. An invitation to formal methods. IEEE
Computer, vol. 29, no. 4, p. 16–30, 1996. 95

68 XU, F.; CAREY, S. Infants’ metaphysics: The case of numerical identity.
Cognitive Psychology, vol. 30, no. 0005, p. 111–153, 1996. Available from Internet:
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.59.1268\&rep=rep1\&type=pdf>.
Cited 05/03/2010. 113

69 BENEVIDES, A. B.; GUIZZARDI, G. A model-based tool for conceptual
modeling and domain ontology engineering in OntoUML. In FILIPE, J.; CORDEIRO,
J. (Ed.). ICEIS. Heidelberg: Springer, 2009. (Lecture Notes in Business Information
Processing, vol. 24), p. 528–538. ISBN 978-3-642-01346-1. Available from Internet:
<http://www.inf.ufes.br/˜gguizzardi/ICEIS 2009.pdf>. Cited 01/27/2010. 125, 189

70 BENEVIDES, A. B.; GUIZZARDI, G.; BRAGA, B. F. B.; ALMEIDA, J. P. A.
Assessing modal aspects of ontouml conceptual models in alloy. In HEUSER, C. A.;
PERNUL, G. (Ed.). Proceedings of the first International Workshop on Evolving Theories
of Conceptual Modelling (ETheCoM 2009), 28th International Conference on Conceptual
Modeling (ER 2009). Gramado, Brazil: Springer, 2009. (Lecture Notes in Computer
Science (LNCS), vol. 5833), p. 55–64. ISBN 978-3-642-04946-0. Available from Internet:
<http://www.inf.ufes.br/˜gguizzardi/benevides-et-al-2009.pdf>. Cited 01/27/2010. 125

71 BENEVIDES, A. B.; GUIZZARDI, G.; BRAGA, B. F. B.; ALMEIDA, J. P. A. Assessing
modal aspects of OntoUML conceptual models in alloy. Journal of Universal Computer Science
(J.UCS) Special Issue on Evolving Theories of Conceptual Modelling, 2011. (Forthcoming). 125

Bibliography 136

72 BRAGA, B. F. B.; ALMEIDA, J. P. A.; GUIZZARDI, G.; BENEVIDES, A. B.
Transforming OntoUML into Alloy: Towards conceptual model validation using a lightweight
formal method. In 2nd IEEE International Workshop UML and Formal Methods (UML&FM
2009) at the 11th International Conference on Formal Engineering Methods (ICFEM 2009). Rio
de Janeiro: [s.n.], 2009. 125

73 BRAGA, B. F. B.; ALMEIDA, J. P. A.; GUIZZARDI, G.; BENEVIDES, A. B.
Transforming OntoUML into Alloy: Towards conceptual model validation using a
lightweight formal method. Innovations in Systems and Software Engineering (ISSE),
Springer-Verlag, London, vol. 6, no. 1, p. 55–63, 2010. (Print). Available from Internet:
<http://www.springerlink.com/content/m1715n1220717l58/fulltext.pdf>. Cited 09/21/2010.
125

74 GUARINO, N.; WELTY, C. Evaluating ontological decisions with ontoclean.
Communications of the ACM, vol. 45, no. 2, p. 61–65, February 2002. Available from Internet:
<http://dx.doi.org/10.1145/503124.503150>. Cited 01/13/2010. 127

75 Laboratory for Applied Ontology (LOA). OntoClean. Available from Internet:
<http://www.ontoclean.org>. Cited 08/20/2009. 127

76 Stanford Center for Biomedical Informatics Research. Protégé OWL Editor. Available from
Internet: <http://protege.stanford.edu>. Cited 08/20/2009. 127

77 Sandpiper Software. Visual Ontology Modeler. Available from Internet: <http://www-
.sandsoft.com>. Cited 08/20/2009. 127

78 PEASE, A. Sigma. Available from Internet: <http://sigmakee.sourceforge.net>. Cited
08/20/2009. 127

79 BEATO, M. E.; BARRIO-SOLÓRZANO, M.; CUESTA, C. E. UML automatic verification
tool (TABU). In SAVCBS’04 Specification and Verification of Component-Based Systems at
ACM SIGSOFT 2004/FSE-12. [S.l.: s.n.], 2004. 127

80 SCHINZ, I.; TOBEN, T.; MRUGALLA, C.; WESTPHAL, B. The Rhapsody UML
verification environment. In SEFM ’04: Proceedings of the Software Engineering and Formal
Methods, Second International Conference. [S.l.]: IEEE Computer Society, 2004. p. 174–183.
ISBN 0-7695-2222-X. 127

81 MASSONI, T.; GHEYI, R.; BORBA, P. A UML class diagram analyzer. In 3rd International
Workshop on Critical Systems Development with UML (CSDUML’04), affiliated with 7th
«UML» Conference. Lisbon: Springer-Verlag, 2004. p. 143–153. 127

82 ANASTASAKIS, K.; BORDBAR, B.; GEORG, G.; RAY, I. UML2Alloy: A challenging
model transformation. In ENGELS, G.; OPDYKE, B.; SCHMIDT, D.; WEIL, F. (Ed.).
ACM/IEEE 10th International Conference on Model Driven Engineering Languages and
Systems. Nashville, USA: Springer, 2007. (LNCS, vol. 4735), p. 436–450. Available from
Internet: <http://kyriakos.anastasakis.net/prof/pubs/models07.pdf>. Cited 09/24/2010. 127

83 VISSERS, C.; SINDEREN, M. van; PIRES, L. F. What makes industries believe in formal
methods. In Proceedings of the 13th International Symposium on Protocol Specification, Testing,
and Verification (PSTV XIII). Amsterdam: Elsevier Science Publishers, 1993. p. 3–26. 128

Bibliography 137

84 ARTALE, A.; GUARINO, N.; KEET, C. M. Formalising temporal constraints on part-whole
relations. In BREWKA, G.; LANG, J. (Ed.). KR. [S.l.]: AAAI Press, 2008. p. 673–683. ISBN
978-1-57735-384-3. 129

85 GUIZZARDI, G.; HALPIN, T. Ontological foundations for conceptual modeling. Journal
of Applied Ontology, vol. 3, no. 1-2, p. 91–110, 2008. ISSN 1570-5838. Available from Internet:
<http://dx.doi.org/10.3233/AO-2008-0049>. Cited 08/20/2009. 129

86 BENEVIDES, A. B. How to install and run OntoUML Editor. Available from Internet:
<http://code.google.com/p/ontouml/wiki/How to install and run OntoUML Editor>. Cited
09/01/2009. 228

87 BENEVIDES, A. B. How to use Cut/Copy/Paste in OntoUML
Editor. Available from Internet: <http://code.google.com/p/ontouml/wiki-
/How to use Cut Copy Paste in OntoUML Editor>. Cited 09/01/2009. 232

88 BENEVIDES, A. B. How to install and run the OntoUML2Alloy ATL
transformation. Available from Internet: <http://code.google.com/p/ontouml/wiki-
/How to install and run the OntoUML2Alloy ATL transformation>. Cited 11/03/2009.
233

138

In the following appendices, one can find the complete set of OCL formalizations for the

syntactical constraints shown in the OntoUML profile (11, pp. 317–320, 334–338, 348–352)

(appendix A); the ATL transformation that automatically transforms OntoUML models into

Alloy specifications (appendix B); the theme customizations for the Alloy Analyzer tool, created

in order to customize the visualization of the generated instances (appendix E); some manuals of

how to install the OntoUML Graphical Editor in Eclipse (appendix C) and use the OntoUML to

Alloy ATL transformation (appendix D). In the annexes, we show the Free and Open Source

Software (FOSS) licenses that we have utilized to license our software (annexes A and B).

139

APPENDIX A -- Definition of the OntoUML
Syntactical Constraints in OCL

This chapter documents the set of OCL specifications created in order to formalize the OntoUML

syntactical constraints. Therefore, we will revisit the original constraints shown in OntoUML

profile shown in 11, pp. 317–320, 334–338, 348–352 by adding the OCL specification for every

syntactical constraint elaborated in the profile.

So, beneath, we revisit the first part of the OntoUML profile.

A.1 Definition of the Original OntoUML Invariants in
OCL

OntoUML profile regarding the categories depicted in Fig. 9

Metaclass: Substance Sortal

Description: Substance Sortal is an abstract metaclass that represents the general properties

of all substance sortals, i.e., rigid, relationally independent object universals that supply a

principle of identity for their instances. Substance Sortal has no concrete syntax. Thus, symbolic

representations are defined by each of its concrete subclasses.

Constraints:

1. Every substantial object represented in a conceptual model using this profile must be

an instance of a substance sortal, directly or indirectly. This means that every concrete

A.1 Definition of the Original OntoUML Invariants in OCL 140

element of this profile used in a class diagram (isAbstract = false) must include in its

general collection one class stereotyped as either «kind», «quantity» or «collective»;

• Formalized as an OCL invariant verified in batch verification1:

* This invariant uses the EOperation allSuperTypes(), which is specified in OCL in the

section A.3.

Listing 18: OCL expression for the first constraint on the metaclass Substance Sortal.

1 context ObjectClass

2 inv SubstanceSortalConstraint1: if ((self.

isAbstract = false) and not self.oclIsKindOf(

SubstanceSortal)) then self.allSuperTypes ()->

exists(x | x.oclIsKindOf(SubstanceSortal)) else

true endif

2. A substantial object represented in a conceptual model using this profile cannot be an

instance of more than one ultimate substance sortal. This means that any stereotyped class

in this profile used in a class diagram must not include in its general collection more than

one substance sortal class. Moreover, a substance sortal must also not include another

substance sortal nor a «subkind» in its general collection, i.e., a substance sortal cannot

have as a supertype a member of {«kind», «subkind», «quantity», «collective»};

• Formalized as two OCL invariants verified in live verification2:

* These invariants uses the EOperations allSubTypes() and allSuperTypes(), which are

specified in OCL in the section A.3.

Listing 19: OCL expressions for the second constraint on the metaclass Substance

Sortal.

1 context Generalization

2 inv SubstanceSortalConstraint2a: self.specific.

allSubTypes ()->including(self.specific)->forAll

(x | x.allSuperTypes ()->select(y | y.

oclIsKindOf(SubstanceSortal))->size() <= 1)

3 context Generalization

1For an explanation of the batch verification mode, see subsection 4.3.1.
2For an explanation of the live verification mode, see subsection 4.3.1.

A.1 Definition of the Original OntoUML Invariants in OCL 141

4 inv SubstanceSortalConstraint2b: if self.specific.

oclIsKindOf(SubstanceSortal) then not self.

general.oclIsKindOf(RigidSortalClass) else true

endif

3. A Class representing a rigid substantial universal cannot be a subclass of a Class

representing an anti-rigid universal. Thus, a substance sortal cannot have as a supertype

(must not include in its general collection) a member of {«phase», «role», «roleMixin»}.

• Formalized as an OCL invariant verified in live verification:

Listing 20: OCL expression for the third constraint on the metaclass Substance

Sortal.

1 context Generalization

2 inv SubstanceSortalConstraint3: if self.specific.

oclIsKindOf(SubstanceSortal) then not (self.

general.oclIsKindOf(AntiRigidSortalClass) or

self.general.oclIsKindOf(RoleMixin)) else true

endif

Stereotype: «collective»

Description: A «collective» represents a substance sortal whose instances are collectives,

i.e., they are collections of complexes that have a uniform structure. Examples include a deck of

cards, a forest, a group of people, a pile of bricks. Collectives can typically relate to complexes

via a constitution relation. For example, a pile of bricks that constitutes a wall, a group of

people that constitutes a football team. In this case, the collectives typically have an extensional

principle of identity, in contrast to the complexes they constitute. For instance, The Beatles was

in a given world w constituted by the collective {John, Paul, George, Pete} and in another world

w8 constituted by the collective {John, Paul, George, Ringo}. The replacement of Pete Best by

Ringo Star does not alter the identity of the band, but creates a numerically different group of

people.

Constraints:

A.1 Definition of the Original OntoUML Invariants in OCL 142

1. A collective can be extensional. In this case the meta-attribute isExtensional is equal to

True. This means that all its parts are essential and the change (or destruction) of any of

its parts terminates the existence of the collective. We use the symbol {extensional} to

represent an extensional collective.

• Formalized as an OCL invariant verified in live verification:

Listing 21: OCL expression for the first constraint on the stereotype «collective».

1 context Meronymic

2 inv CollectiveConstraint1: (not self.isEssential)

implies self.source ->forAll(x | if x.

oclIsKindOf(Property) then (if x.oclAsType(

Property).endType.oclIsKindOf(Collective) then

not x.oclAsType(Property).endType.oclAsType(

Collective).isExtensional else true endif) else

false endif)

Stereotype: «subkind»

Description: A «subkind» is a rigid, relationally independent restriction of a substance sortal

that carries the principle of identity supplied by it. An example could be the subkind MalePerson

of the kind Person. In general, the stereotype «subkind» can be omitted in conceptual models

without loss of clarity.

Constraints:

1. A «subkind» cannot have as a supertype (must not include in its general collection) a

member of {«phase», «role», «roleMixin»}.

• Formalized as an OCL invariant verified in live verification:

Listing 22: OCL expression for the first constraint on the stereotype «subkind».

1 context Generalization

2 inv SubKindConstraint1: if self.specific.

oclIsKindOf(SubKind) then not (self.general.

A.1 Definition of the Original OntoUML Invariants in OCL 143

oclIsKindOf(AntiRigidSortalClass) or self.

general.oclIsKindOf(RoleMixin)) else true endif

Stereotype: «phase»

Description: A «phase» represents the phased-sortals phase, i.e. anti-rigid and relationally

independent universals defined as part of a partition of a substance sortal. For instance,

〈Caterpillar, Butterfly〉 partitions the kind Lepdopterum.

Constraints:

1. Phases are anti-rigid universals and, thus, a «phase» cannot appear in a conceptual model

as a supertype of a rigid universal;

• Formalized as an OCL invariant verified in live verification. A wider constraint

is implemented by the union of CategoryConstraint1, SubkindConstraint1 and

SubstanceSortalConstraint3, so this constraint is not needed:

Listing 23: OCL expression for the first constraint on the stereotype «phase».

1 context Phase

2 inv PhaseConstraint1: if (self.specific.oclIsKindOf

(RigidSortalClass) or self.specific.oclIsKindOf

(Category)) then not self.general.oclIsKindOf(

Phase) else true endif

2. The phases {P1. . . Pn} that form a phase-partition of a substance sortal S are represented

in a class diagram as a disjoint and complete generalization set. In other words, a

GeneralizationSet with (isCovering = true) and (isDisjoint = true) is used in a representation

mapping as the representation for the ontological concept of a phase-partition.

• Formalized as an OCL invariant verified in batch verification:

Listing 24: OCL expression for the second constraint on the stereotype «phase».

1 context Phase

A.1 Definition of the Original OntoUML Invariants in OCL 144

2 inv PhaseConstraint2: let general_substance_sortal

: SubstanceSortal = Generalization.allInstances

()->select(x | (x.specific = self) and (x.

general.oclIsKindOf(SubstanceSortal)))->collect

(x | x.general.oclAsType(SubstanceSortal))->any

(true) in (let phase_generalizations : Set(

Generalization) = Generalization.allInstances ()

->select(x | (x.general =

general_substance_sortal) and (x.specific.

oclIsKindOf(Phase))) in (let

phase_generalization_sets : Set(

GeneralizationSet) = GeneralizationSet.

allInstances ()->select(x | x.generalization ->

includesAll(phase_generalizations)) in (if (

general_substance_sortal.oclIsUndefined () or (

phase_generalizations ->size() = 1)) then true

else ((phase_generalization_sets ->size() = 1)

and (phase_generalization_sets ->forAll(x | (x.

isCovering = true) and (x.isDisjoint = true))))

endif)))

Stereotype: «role»

Description: A «role» represents a phased-sortal role, i.e. anti-rigid and relationally

dependent universal. For instance, the role student is played by an instance of the kind Person.

Constraints:

1. Roles are anti-rigid universals and, thus, a «role» cannot appear in a conceptual model as a

supertype of a rigid universal.

• Formalized as an OCL invariant verified in live verification. A wider constraint

is implemented by the union of CategoryConstraint1, SubkindConstraint1 and

SubstanceSortalConstraint3, so this constraint is not needed:

A.1 Definition of the Original OntoUML Invariants in OCL 145

Listing 25: OCL expression for the first constraint on the stereotype «role».

1 context Role

2 inv RoleConstraint1: if (self.specific.oclIsKindOf(

RigidSortalClass) or self.specific.oclIsKindOf(

Category)) then not self.general.oclIsKindOf(

Role) else true endif

Metaclass: Mixin Class

Description: Mixin Class is an abstract metaclass that represents the general properties of all

mixins, i.e., non-sortals (or dispersive universals). Mixin Class has no concrete syntax. Thus,

symbolic representations are defined by each of its concrete subclasses.

Constraints:

1. A class representing a non-sortal universal cannot be a subclass of a class representing

a Sortal. As a consequence of this postulate we have that a mixin class cannot have as a

supertype (must not include in its general collection) a member of {«kind», «quantity»,

«collective», «subkind», «phase», «role»};

• Formalized as an OCL invariant verified in live verification:

Listing 26: OCL expression for the first constraint on the metaclass Mixin Class.

1 context Generalization

2 inv MixinClassConstraint1: if self.specific.

oclIsKindOf(MixinClass) then not self.general.

oclIsKindOf(SortalClass) else true endif

2. A non-sortal cannot have direct instances. Therefore, a mixin class must always be depicted

as an abstract class (isAbstract = true).

• Formalized as an OCL invariant verified in live verification:

Listing 27: OCL expression for the second constraint on the metaclass Mixin Class.

A.1 Definition of the Original OntoUML Invariants in OCL 146

1 context MixinClass

2 inv MixinClassConstraint2: self.isAbstract = true

Stereotype: «category»

Description: A «category» represents a rigid and relationally independent mixin, i.e.,

a dispersive universal that aggregates essential properties which are common to different

substance sortals. For example, the category RationalEntity as a generalization of Person

and IntelligentAgent.

Constraints:

1. A «category» cannot have a «roleMixin» as a supertype. In other words, together with

condition 1 for all mixins we have that a «category» can only be subsumed by another

«category» or a «mixin».

• Formalized as an OCL invariant verified in live verification:

Listing 28: OCL expression for the first constraint on the stereotype «category».

1 context Generalization

2 inv CategoryConstraint1: if self.specific.

oclIsKindOf(Category) then (self.general.

oclIsKindOf(Category) or self.general.

oclIsKindOf(Mixin)) else true endif

Stereotype: «mixin»

Description: A «mixin» represents properties which are essential to some of its instances

and accidental to others (semi-rigidity). An example is the mixin Seatable, which represents a

property that can be considered essential to the kinds Chair and Stool, but accidental to Crate,

Paper Box or Rock.

Constraints:

A.1 Definition of the Original OntoUML Invariants in OCL 147

1. A «mixin» cannot have a «roleMixin» as a supertype.

• Formalized as an OCL invariant verified in live verification:

Listing 29: OCL expression for the first constraint on the stereotype «mixin».

1 context Generalization

2 inv MixinConstraint1: if self.specific.oclIsKindOf(

Mixin) then not self.general.oclIsKindOf(

RoleMixin) else true endif

Now, we revisit the second part of the OntoUML profile.

OntoUML profile regarding the categories depicted in Fig. 15

Stereotype: «role»

Constraints:

2. Every «role» class must be connected to an association end of a «mediation» relation.

• Formalized as an OCL invariant verified in batch verification:

* This invariant uses the EOperation allSuperTypes(), which is specified in OCL in the

section A.3.

Listing 30: OCL expression for the second constraint on the stereotype «role».

1 context Role

2 inv RoleConstraint2: Mediation.allInstances ()->

exists(x | x.target ->exists(y | if y.

oclIsKindOf(Property) then ((y.oclAsType(

Property).endType = self) or (self.

allSuperTypes ()->includes(y.oclAsType(Property)

.endType))) else false endif))

A.1 Definition of the Original OntoUML Invariants in OCL 148

Stereotype: «roleMixin»

Description: A «roleMixin» represents an anti-rigid and externally dependent non-sortal,

i.e., a dispersive universal that aggregates properties which are common to different roles. In

includes formal roles such as whole and part, and initiatior and responder.

Constraints:

1. Every «roleMixin» class must be connected to an association end of a «mediation» relation.

• Formalized as an OCL invariant verified in batch verification:

Listing 31: OCL expression for the first constraint on the stereotype «roleMixin».

1 context RoleMixin

2 inv RoleMixinConstraint1: Mediation.allInstances ()

->exists(x | x.target ->exists(y | if y.

oclIsKindOf(Property) then (y.oclAsType(

Property).endType = self) else false endif))

Stereotype: «mode»

Description: A «mode» universal is an intrinsic moment universal. Every instance of mode

universal is existentially dependent of exactly one entity. Examples include skills, thoughts,

beliefs, intentions, symptoms, private goals.

Constraints:

1. Every «mode» must be (directly or indirectly) connected to an association end of at least

one «characterization» relation.

• Formalized as an OCL invariant verified in batch verification:

* This invariant uses the EOperations isConected(x:Element) and allSuperTypes(),

which are specified in OCL in the section A.3.

A.1 Definition of the Original OntoUML Invariants in OCL 149

Listing 32: OCL expression for the first constraint on the stereotype «mode».

1 context Mode

2 inv ModeConstraint1: Characterization.allInstances

()->exists(x | x.isConected(self) or self.

allSuperTypes ()->exists(y | x.isConected(y)))

Stereotype: «relator»

Description: A «relator» universal is a relational moment universal. Every instance of relator

universal is existentially dependent of at least two distinct entities. Relators are the instantiation

of relational properties such as marriages, kisses, handshakes, commitments, and purchases.

Constraints:

1. Every «relator» must be (directly or indirectly) connected to an association end on at least

one «mediation» relation;

• Formalized as an OCL invariant verified in batch verification:

* This invariant uses the EOperations isConected(x:Element) and allSuperTypes(),

which are specified in OCL in the section A.3.

Listing 33: OCL expression for the first constraint on the stereotype «relator».

1 context Relator

2 inv RelatorConstraint1: Mediation.allInstances ()->

exists(x | x.isConected(self) or self.

allSuperTypes ()->exists(y | x.isConected(y)))

2. Let R be a relator universal and let {C1. . . Cn} be a set of universals mediated by R

(related to R via a «mediation» relation). Finally, let lowerCi be the value of the minimum

cardinality constraint of the association end connected to Ci in the «mediation» relation.

Then, we have that (
n

∑
i=1

lowerCi)≥ 2.

• Formalized as an OCL invariant verified in batch verification:

A.1 Definition of the Original OntoUML Invariants in OCL 150

* This invariant uses the EOperation allSuperTypes(), which is specified in OCL in the

section A.3.

Listing 34: OCL expression for the second constraint on the stereotype «relator».

1 context Relator

2 inv RelatorConstraint2: Mediation.allInstances ()->

select(x | x.source ->exists(y | if y.

oclIsKindOf(Property) then ((y.oclAsType(

Property).endType = self) or self.allSuperTypes

()->includes(y.oclAsType(Property).endType))

else false endif))->collect(z | z.target ->

collect(w | if w.oclIsKindOf(Property) then (if

(w.oclAsType(Property).lower = -1) then 2 else

w.oclAsType(Property).lower endif) else 0

endif)->sum())->sum() >= 2

Stereotype: «mediation»

Description: A «mediation» is a formal relation that takes place between a relator universal

and the endurant universal(s) it mediates. For example, the universal Marriage mediates the role

universals Husband and Wife, the universal Enrollment mediates Student and University, and the

universal Covalent Bond mediates the universal Atom.

Constraints:

1. An association stereotyped as «mediation» must have in its source association end a class

stereotyped as «relator» representing the corresponding relator universal (self.source.

oclIsTypeOf(Relator)=true);

• Formalized as an OCL invariant verified in live verification:

Listing 35: OCL expression for the first constraint on the stereotype «mediation».

1 context Mediation

2 inv MediationConstraint1: self.source ->forAll(x |

if x.oclIsKindOf(Property) then x.oclAsType(

A.1 Definition of the Original OntoUML Invariants in OCL 151

Property).endType.oclIsTypeOf(Relator) else

false endif)

2. The association end connected to the mediated universal must have the minimum

cardinality constraints of at least one (self.target.lower ≥ 1);

• Formalized as an OCL invariant verified in live verification:

Listing 36: OCL expression for the second constraint on the stereotype «mediation».

1 context Property

2 inv MediationConstraint2: if self.target.

oclIsKindOf(Mediation) then ((self.lower >= 1)

or (self.lower = -1)) else true endif

3. The association end connected to the mediated universal must have the property

(self.target.isReadOnly = true);

• Formalized as an OCL invariant verified in live verification:

Listing 37: OCL expression for the third constraint on the stereotype «mediation».

1 context Property

2 inv MediationConstraint3: if self.target.

oclIsKindOf(Mediation) then self.isReadOnly

else true endif

4. The association end connected to the relator universal must have the minimum cardinality

constraints of at least one (self.source.lower ≥ 1);

• Formalized as an OCL invariant verified in live verification:

Listing 38: OCL expression for the fourth constraint on the stereotype «mediation».

1 context Property

2 inv MediationConstraint4: if self.source.

oclIsKindOf(Mediation) then ((self.lower >= 1)

or (self.lower = -1)) else true endif

A.1 Definition of the Original OntoUML Invariants in OCL 152

5. «mediation» associations are always binary associations.

• Formalized as an OCL invariant verified in batch verification:

Listing 39: OCL expression for the fifth constraint on the stereotype «mediation».

1 context Mediation

2 inv MediationConstraint5: self.relatedElement ->size

() = 2

Stereotype: «characterization»

Description: A «characterization» is a formal relation that takes place between a mode

universal and the endurant universal this mode universal characterizes. For example, the

universals Private Goal and Capability characterize the universal Agent.

Constraints:

1. An association stereotyped as «characterization» must have in its source association

end a class stereotyped as «mode» representing the characterizing mode universal

(self.source.oclIsTypeOf(Mode)=true);

• Formalized as an OCL invariant verified in live verification:

Listing 40: OCL expression for the first constraint on the stereotype

«characterization».

1 context Characterization

2 inv CharacterizationConstraint1: self.source ->

forAll(x | if x.oclIsKindOf(Property) then x.

oclAsType(Property).endType.oclIsTypeOf(Mode)

else false endif)

2. The association end connected to the characterized universal must have the cardinality

constraints of one and exactly one (self.target.lower = 1 and self.target.upper = 1);

• Formalized as an OCL invariant verified in live verification:

A.1 Definition of the Original OntoUML Invariants in OCL 153

Listing 41: OCL expression for the second constraint on the stereotype

«characterization».

1 context Property

2 inv CharacterizationConstraint2: if self.target.

oclIsKindOf(Characterization) then ((self.lower

= 1) and (self.upper = 1)) else true endif

3. The association end connected to the characterizing quality universal (source association

end) must have the minimum cardinality constraints of one (self.source.lower ≥ 1);

• Formalized as an OCL invariant verified in live verification:

Listing 42: OCL expression for the third constraint on the stereotype

«characterization».

1 context Property

2 inv CharacterizationConstraint3: if self.source.

oclIsKindOf(Characterization) then ((self.lower

>= 1) or (self.lower = -1)) else true endif

4. The association end connected to the characterized universal must have the property

(self.target.isReadOnly = true);

• Formalized as an OCL invariant verified in live verification:

Listing 43: OCL expression for the fourth constraint on the stereotype

«characterization».

1 context Property

2 inv CharacterizationConstraint4: if self.target.

oclIsKindOf(Characterization) then self.

isReadOnly else true endif

5. «characterization» associations are always binary associations.

• Formalized as an OCL invariant verified in batch verification:

A.1 Definition of the Original OntoUML Invariants in OCL 154

Listing 44: OCL expression for the fifth constraint on the stereotype

«characterization».

1 context Characterization

2 inv CharacterizationConstraint5: self.

relatedElement ->size() = 2

Stereotype: Derivation Relation

Description: A derivation relation represents the formal relation of derivation that takes

place between a material relation and the relator universal this material relation is derived from.

Examples include the material relation married-to, which is derived from the relator universal

Marriage, the material relation kissed-by, derived from the relator universal Kiss, and the material

relation purchases-from, derived from the relator universal Purchase.

Constraints:

1. A derivation relation must have one of its association ends connected to a relator

universal (the black circle end) and the other one connected to a material rela-

tion (self.target.oclIsTypeOf(Relator)=true, self.source.oclIsTypeOf(Material Associa-

tion)=true);

• Formalized as two OCL invariants verified in live verification:

Listing 45: OCL expressions for the first constraint on the stereotype Derivation

Relation.

1 context Derivation

2 inv DerivationConstraint1a: self.source ->forAll(x |

if x.oclIsKindOf(Property) then x.oclAsType(

Property).endType.oclIsTypeOf(

MaterialAssociation) else false endif)

3 context Derivation

4 inv DerivationConstraint1b: self.target ->forAll(x |

if x.oclIsKindOf(Property) then x.oclAsType(

A.1 Definition of the Original OntoUML Invariants in OCL 155

Property).endType.oclIsTypeOf(Relator) else

false endif)

2. Derivation associations are always binary associations;

• Formalized as an OCL invariant verified in batch verification:

Listing 46: OCL expression for the second constraint on the stereotype Derivation

Relation.

1 context Derivation

2 inv DerivationConstraint2: self.relatedElement ->

size() = 2

3. The black circle end of the derivation relation must have the cardinality constraints of one

and exactly one (self.target.lower = 1 and self.target.upper = 1);

• Formalized as an OCL invariant verified in live verification:

Listing 47: OCL expression for the third constraint on the stereotype Derivation

Relation.

1 context Property

2 inv DerivationConstraint3: if self.target.

oclIsKindOf(Derivation) then ((self.lower = 1)

and (self.upper = 1)) else true endif

4. The black circle end of the derivation relation must have the property (self.target.

isReadOnly = true);

• Formalized as an OCL invariant verified in live verification:

Listing 48: OCL expression for the fourth constraint on the stereotype Derivation

Relation.

1 context Property

2 inv DerivationConstraint4: if self.target.

oclIsKindOf(Derivation) then self.isReadOnly

else true endif

A.1 Definition of the Original OntoUML Invariants in OCL 156

5. The cardinality constraints of the association end connected to the material relation in a

derivation relation are a product of the cardinality constraints of the «mediation» relations

of the relator universal that this material relation derives from. This is done in the manner

previously shown in subsection 4.3.3. However, since «mediation» relations require a

minimum cardinality of one on both of its association ends, then the minimum cardinality

on the material relation end of a derivation relation must also be ≥ 1 (self.source.lower ≥
1).

• Formalized as an OCL invariant verified in live verification:

Listing 49: OCL expression for the fifth constraint on the stereotype Derivation

Relation.

1 context Property

2 inv DerivationConstraint5: if self.source.

oclIsKindOf(Derivation) then ((self.lower >= 1)

or (self.lower = -1)) else true endif

Stereotype: «material»

Description: A «material» association represents a material relation, i.e., a relational

universal which is induced by a relator universal. Examples include student studies in university,

patient is treated in medical unit, person is married to person.

Constraints:

1. Every «material» association must be connected to the association end of exactly one

derivation relation;

• Formalized as an OCL invariant verified in batch verification:

Listing 50: OCL expression for the first constraint on the stereotype «material».

1 context MaterialAssociation

2 inv MaterialAssociationConstraint1: Derivation.

allInstances ()->one(x | x.source ->exists(y | if

y.oclIsKindOf(Property) then (y.oclAsType(

Property).endType = self) else false endif))

A.1 Definition of the Original OntoUML Invariants in OCL 157

2. The cardinality constraints of the association ends of a material relation are derived from

the cardinality constraints of the «mediation» relations of the relator universal that this

material relation is derived from. This is done in the manner shown in subsection 4.3.3.

However, since «mediation» relations require a minimum cardinality of one on both of

its association ends, then the minimum cardinality constraint on each end of the derived

material relation must also be ≥ 1;

• Formalized as an OCL invariant verified in live verification:

Listing 51: OCL expression for the second constraint on the stereotype «material».

1 context Property

2 inv MaterialAssociationConstraint2: if self.

associationEnd.oclIsKindOf(MaterialAssociation)

then ((self.lower >= 1) or (self.lower = -1))

else true endif

3. Every «material» association must have the property (isDerived = true).

• Formalized as an OCL invariant verified in live verification:

Listing 52: OCL expression for the third constraint on the stereotype «material».

1 context MaterialAssociation

2 inv MaterialAssociationConstraint3: self.isDerived

Metaclass: Property

Description: An attribute in the UML metamodel is a property owned by a classifier.

Attributes are used in this profile to represent attribute functions derived for quality universals.

Examples are the attributes color, age, and startingDate.

Constraints:

1. A property owned by a classifier (representing an attribute of that classifier) must have the

minimum cardinality constraints of one (self.lower ≥ 1).

• Formalized as an OCL invariant verified in live verification:

A.1 Definition of the Original OntoUML Invariants in OCL 158

Listing 53: OCL expression for the first constraint on the metaclass Property.

1 context DatatypeRelationship

2 inv PropertyConstraint1: self.target ->forAll(x | if

x.oclIsKindOf(Property) then ((x.oclAsType(

Property).lower >= 1) or (x.oclAsType(Property)

.lower = -1)) else false endif)

Finally, we revisit the last part of the OntoUML profile.

OntoUML profile regarding the categories depicted in Fig. 17

Metaclass: Meronymic

Description: Abstract metaclass representing the general properties of all meronymic

relations. Meronymic has no concrete syntax. Thus, symbolic representations are defined

by each of its concrete subclasses.

Constraints:

1. Weak supplementation: Let U be a universal whose instances are wholes and let {C1. . . Cn}

be a set of universals related to U via aggregation relations. Let lowerCi be the value of the

minimum cardinality constraint of the association end connected to Ci in the aggregation

relation. Then, we have that (
n

∑
i=1

lowerCi)≥ 2;

• Formalized as an OCL invariant verified in batch verification:

Listing 54: OCL expression for the first constraint on the metaclass Meronymic.

1 context Meronymic

2 inv MeronymicConstraint1: Meronymic.allInstances ()

->select(x | x.source ->exists(y | if y.

oclIsKindOf(Property) then (self.source ->exists

(z | if z.oclIsKindOf(Property) then (z.

A.1 Definition of the Original OntoUML Invariants in OCL 159

oclAsType(Property).endType = y.oclAsType(

Property).endType) else false endif)) else

false endif))->collect(w | w.target ->collect(k

| if k.oclIsKindOf(Property) then (if (k.

oclAsType(Property).lower = -1) then 2 else k.

oclAsType(Property).lower endif) else 0 endif)

->sum())->sum() >= 2

2. Essential Parthood: The isEssential attribute represents whether the meronymic relation

is one of essential parthood, i.e., whether the part is essential to the whole. In case the

classifier connected to the association end representing the whole is an anti-rigid classifier,

then the meta-attribute isEssential must be false, whereas the meta-attribute isImmutable

may be true. However, if isEssential is true (in case of a rigid classifier with essential parts)

then isImmutable must also be true. The concrete representation of this meta-property is

via the tagged value essential decorating the association;

* As the meta-attribute isImmutable is defined only for parts in 11, p. 286 and 55,

pp. 17-18, we modified the OntoUML metamodel in order to create a related

meta-attribute regarding the immutability of wholes by replacing the meta-attribute

isImmutable by the meta-attribute isImmutablePart and creating a new meta-attribute

isImmutableWhole in the metaclass Meronymic. See Definitions 25 and 30 for

isImmutablePart and isImmutableWhole, respectively.

• This constraint is formalized as two OCL invariants, in which the first is verified in

live verification and the last is verified in batch verification:

Listing 55: OCL expressions for the second constraint on the metaclass Meronymic.

1 context Meronymic

2 inv MeronymicConstraint2a: (self.source ->forAll(x |

if x.oclIsKindOf(Property) then (x.oclAsType(

Property).endType.oclIsKindOf(

AntiRigidSortalClass) or x.oclAsType(Property).

endType.oclIsKindOf(AntiRigidMixinClass)) else

false endif)) implies (self.isEssential = false

)

3 context Meronymic

A.1 Definition of the Original OntoUML Invariants in OCL 160

4 inv MeronymicConstraint2b: self.isEssential implies

self.isImmutablePart

3. The last two constraints in this metaclass are not actually constraints, but explanations of

meta-attributes. Therefore, they have not been formalized in OCL.

Metaclass: componentOf

Description: componentOf is a parthood relation between two complexes. Examples include:

(a) my hand is part of my arm; (b) a car engine is part of a car; (c) an ALU is part of a CPU; (d)

a heart is part of a circulatory system.

Meta-properties: Non-reflexivity, Anti-Symmetry, Non-Transitivity and Weak Supplementa-

tion.

Constraints:

1. The classes connected to both association ends of this relation must represent universals

whose instances are functional complexes. A universal X is a universal whose instances are

functional complexes if it satisfies the following conditions: (i) If X is a sortal universal,

then it must be either stereotyped as «kind» or be a subtype of a class stereotyped as

«kind»; (ii) Otherwise, if X is a mixin universal, then for all classes Y such that Y is a

subtype of X, we have that Y cannot be either stereotyped as «quantity» or «collective»,

and Y cannot be a subtype of class stereotyped as either «quantity» or «collective».

• Formalized as two OCL invariants, both verified in live verification:

* These invariants uses the EOperation hasFunctionalComplexesInstances(), which is

specified in OCL in the section A.3.

Listing 56: OCL expressions for the first constraint on the metaclass componentOf.

1 context componentOf

2 inv componentOfConstraint1a: self.source ->forAll(x

| if x.oclIsKindOf(Property) then x.oclAsType(

Property).endType.

hasFunctionalComplexesInstances () else false

endif)

A.1 Definition of the Original OntoUML Invariants in OCL 161

3 context componentOf

4 inv componentOfConstraint1b: self.target ->forAll(x

| if x.oclIsKindOf(Property) then x.oclAsType(

Property).endType.

hasFunctionalComplexesInstances () else false

endif)

Metaclass: subQuantityOf

Description: subQuantityOf is a parthood relation between two quantities. Examples include:

(a) alcohol is part of Wine; (b) Plasma is part of Blood; (c) Sugar is part of Ice Cream; (d) Milk

is part of Cappuccino.

Meta-properties: Non-reflexivity, Anti-Symmetry, Transitivity and Strong Supplementation

(Extensional Mereology).

Constraints:

1. This relation is always non-shareable (isShareable = false);

• Formalized as an OCL invariant verified in live verification:

Listing 57: OCL expression for the first constraint on the metaclass subQuantityOf.

1 context subQuantityOf

2 inv subQuantityOfConstraint1: self.isShareable =

false

2. All entities stereotyped as «quantity» are extensional individuals and, thus, all parthood

relations involving quantities are essential parthood relations;

• Formalized as an OCL invariant verified in live verification:

Listing 58: OCL expression for the second constraint on the metaclass

subQuantityOf.

1 context subQuantityOf

A.1 Definition of the Original OntoUML Invariants in OCL 162

2 inv subQuantityOfConstraint2a: self.isEssential =

true

3. The maximum cardinality constraint in the association end connected to the part must be

one (self.target.upper = 1);

• Formalized as an OCL invariant verified in live verification:

Listing 59: OCL expression for the third constraint on the metaclass subQuantityOf.

1 context Property

2 inv subQuantityOfConstraint3: if self.target.

oclIsKindOf(subQuantityOf) then self.upper = 1

else true endif

4. The classes connected to both association ends of this relation must represent universals

whose instances are quantities. A universal X is a universal whose instances are quantities

if it satisfies the following conditions: (i) If X is a sortal universal, then it must be

either stereotyped as «quantity» or be a subtype of a class stereotyped as «quantity»; (ii)

Otherwise, if X is a mixin universal, then for all classes Y such that Y is a subtype of X,

we have that Y cannot be either stereotyped as «kind» or «collective», and Y cannot be a

subtype of class stereotyped as either «kind» or «collective».

• Formalized as two OCL invariants, both verified in live verification:

* These invariants uses the EOperation hasQuantitiesInstances(), which is specified in

OCL in the section A.3.

Listing 60: OCL expressions for the fourth constraint on the metaclass

subQuantityOf.

1 context subQuantityOf

2 inv subQuantityOfConstraint4a: self.source ->forAll(

x | if x.oclIsKindOf(Property) then x.oclAsType

(Property).endType.hasQuantitiesInstances ()

else false endif)

3 inv subQuantityOfConstraint4b: self.target ->forAll(

x | if x.oclIsKindOf(Property) then x.oclAsType

(Property).endType.hasQuantitiesInstances ()

else false endif)

A.1 Definition of the Original OntoUML Invariants in OCL 163

Metaclass: subCollectionOf

Description: subCollectionOf is a parthood relation between two collectives. Examples

include: (a) the north part of the Black Forest is part of the Black Forest; (b) The collection of

Jokers in a deck of cards is part of that deck of cards; (c) the collection of forks in cutlery set is

part of that cutlery set; (d) the collection of male individuals in a crowd is part of that crowd.

Meta-properties: Non-reflexivity, Anti-Symmetry, Transitivity and Weak Supplementation

(Minimum Mereology).

Constraints:

1. The classes connected to both association ends of this relation must represent universals

whose instances are collectives. A universal X is a universal whose instances are collectives

if it satisfies the following conditions: (i) If X is a sortal universal, then it must be either

stereotyped as «collective» or be a subtype of a class stereotyped as «collective»; (ii)

Otherwise, if X is a mixin universal, then for all classes Y such that Y is a subtype of X,

we have that Y cannot be either stereotyped as «kind» or «quantity», and Y cannot be a

subtype of class stereotyped as either «kind» or «quantity»;

• Formalized as two OCL invariants, both verified in live verification:

* These invariants uses the EOperation hasCollectivesInstances(), which is specified in

OCL in the section A.3.

Listing 61: OCL expressions for the first constraint on the metaclass subCollectionOf.

1 context subCollectionOf

2 inv subCollectionOfConstraint1a: self.source ->

forAll(x | if x.oclIsKindOf(Property) then x.

oclAsType(Property).endType.

hasCollectivesInstances () else false endif)

3 inv subCollectionOfConstraint1b: self.target ->

forAll(x | if x.oclIsKindOf(Property) then x.

oclAsType(Property).endType.

hasCollectivesInstances () else false endif)

A.1 Definition of the Original OntoUML Invariants in OCL 164

2. The maximum cardinality constraint in the association end connected to the part must be

one (self.target.upper = 1).

• Formalized as an OCL invariant verified in live verification:

Listing 62: OCL expression for the second constraint on the metaclass

subCollectionOf.

1 context Property

2 inv subCollectionOfConstraint2: if self.target.

oclIsKindOf(subCollectionOf) then self.upper =

1 else true endif

Metaclass: memberOf

Description: memberOf is a parthood relation between a complex or a collective (as a part)

and a collective (as a whole). Examples include: (a) a tree is part of forest; (b) a card is part of a

deck of cards; (c) a fork is part of cutlery set; (d) a club member is part of a club.

Meta-properties: Non-reflexivity, Anti-Symmetry, Intransitivity and Weak Supplementation.

Although transitivity does not hold across two memberOf relations, a memberOf relation followed

by subCollectionOf is transitive. That is, for all a,b,c, if memberOf(a,b) and memberOf(b,c) then

¬memberOf(a,c), but if memberOf(a,b) and subCollectionOf(b,c) then memberOf(a,c).

Constraints:

1. This relation can only represent essential parthood (isEssential = true) if the object

representing the whole on this relation is an extensional (isExtensional = true) individual.

In this case, all parthood relations in which this individual participates as a whole are

essential parthood relations;

• Formalized as an OCL invariant verified in live verification:

Listing 63: OCL expression for the first constraint on the metaclass memberOf.

1 context Collective

A.2 Definition of Additional Invariants in OCL 165

2 inv memberOfConstraint1: (not self.isExtensional)

implies (memberOf.allInstances ()->select(x | x.

source ->forAll(y | if y.oclIsKindOf(Property)

then (y.oclAsType(Property).endType = self)

else false endif))->forAll(x | not x.

isEssential))

2. The classifier connected to association end relative to the whole individual must be a

universal whose instances are collectives. The classifier connected to the association end

relative to the part can be either a universal whose instances are collectives, or a universal

whose instances are functional complexes.

• Formalized as two OCL invariants, both verified in live verification:

* These invariants uses the EOperations hasCollectivesInstances() and hasFunctional-

ComplexesInstances(), which are specified in OCL in the section A.3.

Listing 64: OCL expressions for the second constraint on the metaclass memberOf.

1 context memberOf

2 inv memberOfConstraint2a: self.source ->forAll(x |

if x.oclIsKindOf(Property) then x.oclAsType(

Property).endType.hasCollectivesInstances ()

else false endif)

3 inv memberOfConstraint2b: self.target ->forAll(x |

if x.oclIsKindOf(Property) then (x.oclAsType(

Property).endType.hasCollectivesInstances () or

x.oclAsType(Property).endType.

hasFunctionalComplexesInstances ()) else false

endif)

A.2 Definition of Additional Invariants in OCL

This section documents a set of OCL invariants that are not related to the OntoUML syntactical

constraints as documented in the OntoUML profile (11, pp. 317–320, 334–338, 348–352). We

create these invariants and formalize them in OCL as part of the OntoUML syntactical constraints

because we think they are important in the specification of OntoUML models.

A.2 Definition of Additional Invariants in OCL 166

Some of these invariants were not specified in the OntoUML profile because they are similar

to invariants taken from the UML metamodel. For example, the invariants that state that the

interval specified by the minimum and maximum cardinalities must be a non-empty (possibly

infinite) set of natural numbers (i.e., the minimum cardinality must be less or equal than the

maximum cardinality) are present in the UML metamodel (13, p. 95, constraint 2). As, we

implemented the OntoUML metamodel from scratch, we have to specify these UML invariants

in OCL.

Additional Invariants

• In all association ends of the associations stereotyped as «formal» or «material», the

maximum cardinality constraint (the property upper) must be equal or greater to the lower

cardinality constraint (the property lower);

– Formalized as an OCL invariant verified in batch verification:

Listing 65: OCL expression for the first additional constraint on the metaclass

Association.

1 context Association

2 inv AssociationConstraint1 *: self.associationEnd ->

forAll(x | if (x.lower <> -1) then ((x.upper >=

x.lower) or (x.upper = -1)) else (x.upper =

-1) endif)

• A relationship stereotyped as «datatypeRelationship» must have in its target association

end a class stereotyped as «simpleDatatype» or «structuredDatatype», because attributes

represent attribute functions derived for quality universals;

– Formalized as an OCL invariant verified in live verification:

Listing 66: OCL expression for the first additional constraint on the stereotype

«datatypeRelationship».

1 context DatatypeRelationship

A.2 Definition of Additional Invariants in OCL 167

2 inv DatatypeRelationshipConstraint1 *: self.target ->

forAll(x | if x.oclIsKindOf(Property) then (x.

oclAsType(Property).endType.oclIsKindOf(

SimpleDatatype) or x.oclAsType(Property).

endType.oclIsKindOf(StructuralDatatype)) else

false endif)

• A relationship stereotyped as «datatypeRelationship» must have in its source association

end an instance of Classifier, excepting instances of «simpleDatatype», because a

«simpleDatatype» is a Datatype that has no attributes. Excepting for Generalizations,

GeneralizationSets and Properties, all the other OntoUML constructs are Classifiers;

– Formalized as an OCL invariant verified in live verification:

Listing 67: OCL expression for the second additional constraint on the stereotype

«datatypeRelationship».

1 context DatatypeRelationship

2 inv DatatypeRelationshipConstraint2 *: self.source ->

forAll(x | if x.oclIsKindOf(Property) then (x.

oclAsType(Property).endType.oclIsKindOf(

Classifier) and not x.oclAsType(Property).

endType.oclIsKindOf(SimpleDatatype)) else false

endif)

• Every relationship stereotyped as «datatypeRelationship» that have a «structuredDatatype»

in its source association end must have the meta-attribute isReadOnly = true in its target

association end;

– Formalized as an OCL invariant verified in live verification:

Listing 68: OCL expression for the third additional constraint on the stereotype

«datatypeRelationship».

1 context Property

2 inv DatatypeRelationshipConstraint3 *: (self.target.

oclIsKindOf(DatatypeRelationship)) implies ((

not self.isReadOnly) implies (self.target.

A.2 Definition of Additional Invariants in OCL 168

source ->forAll(x | if (x.oclIsKindOf(Property))

then (not x.oclAsType(Property).endType.

oclIsKindOf(StructuralDatatype)) else false

endif)))

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its source

extremity connected to only one element;

– Formalized as an OCL invariant verified in batch verification:

Listing 69: OCL expression for the first additional constraint on the metaclass

Directed Binary Relationship.

1 context DirectedBinaryRelationship

2 inv DirectedBinaryRelationshipConstraint1: self.

source ->size() = 1

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its target

extremity connected to only one element;

– Formalized as an OCL invariant verified in batch verification:

Listing 70: OCL expression for the second additional constraint on the metaclass

Directed Binary Relationship.

1 context DirectedBinaryRelationship

2 inv DirectedBinaryRelationshipConstraint2: self.

target ->size() = 1

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its source

extremity connected to a Property;

– Formalized as an OCL invariant verified in live verification:

Listing 71: OCL expression for the third additional constraint on the metaclass

Directed Binary Relationship.

A.2 Definition of Additional Invariants in OCL 169

1 context DirectedBinaryRelationship

2 inv DirectedBinaryRelationshipConstraint3 *: self.

source ->forAll(x | x.oclIsKindOf(Property))

• An association stereotyped as «characterization», «mediation», «componentOf», «mem-

berOf», «subCollectionOf», «subQuantityOf» or a derivation relation must have its target

extremity connected to a Property;

– Formalized as an OCL invariant verified in live verification:

Listing 72: OCL expression for the fourth additional constraint on the metaclass

Directed Binary Relationship.

1 context DirectedBinaryRelationship

2 inv DirectedBinaryRelationshipConstraint4 *: self.

target ->forAll(x | x.oclIsKindOf(Property))

• In the source of the relationships stereotyped «characterization», «mediation», «compo-

nentOf», «memberOf», «subCollectionOf», «subQuantityOf» or a derivation relation, the

maximum cardinality constraint (the property upper) must be equal or greater to the lower

cardinality constraint (the property lower);

– Formalized as an OCL invariant verified in batch verification:

Listing 73: OCL expression for the first part of the fifth additional constraint on the

metaclass Directed Binary Relationship.

1 context DirectedBinaryRelationship

2 inv DirectedBinaryRelationshipConstraint5a *: self.

source ->forAll(x | if x.oclIsKindOf(Property)

then (if (x.oclAsType(Property).lower <> -1)

then ((x.oclAsType(Property).upper >= x.

oclAsType(Property).lower) or (x.oclAsType(

Property).upper = -1)) else (x.oclAsType(

Property).upper = -1) endif) else false endif)

• In the target of the relationships stereotyped «characterization», «mediation», «compo-

nentOf», «memberOf», «subCollectionOf», «subQuantityOf» or a derivation relation, the

A.2 Definition of Additional Invariants in OCL 170

maximum cardinality constraint (the property upper) must be equal or greater to the lower

cardinality constraint (the property lower);

– Formalized as an OCL invariant verified in batch verification:

Listing 74: OCL expression for the second part of the fifth additional constraint on

the metaclass Directed Binary Relationship.

1 context DirectedBinaryRelationship

2 inv DirectedBinaryRelationshipConstraint5b *: self.

target ->forAll(x | if x.oclIsKindOf(Property)

then (if (x.oclAsType(Property).lower <> -1)

then ((x.oclAsType(Property).upper >= x.

oclAsType(Property).lower) or (x.oclAsType(

Property).upper = -1)) else (x.oclAsType(

Property).upper = -1) endif) else false endif)

• A generalization must have its source extremity connected to at maximum one element;

– Formalized as an OCL invariant verified in live verification:

Listing 75: OCL expression for the first additional constraint on the metaclass

Generalization.

1 context Generalization

2 inv GeneralizationConstraint1: self.source ->size()

<= 1

• A generalization must have its target extremity connected to at maximum one element;

– Formalized as an OCL invariant verified in live verification:

Listing 76: OCL expression for the second additional constraint on the metaclass

Generalization.

1 context Generalization

2 inv GeneralizationConstraint2: self.target ->size()

<= 1

A.2 Definition of Additional Invariants in OCL 171

• An association stereotyped as «material» must be connected to Properties which have its

meta-attributes isDerived = true;

– Formalized as an OCL invariant verified in live verification:

Listing 77: OCL expression for the first additional constraint on the stereotype

«material».

1 context Property

2 inv MaterialAssociationConstraint4 *: if self.

associationEnd.oclIsKindOf(MaterialAssociation)

then isDerived else true endif

• The maximum cardinalities of an association stereotyped as «material» are calculated

automatically;

– Formalized as an OCL invariant verified in batch verification:

Listing 78: OCL expression for the second additional constraint on the stereotype

«material».

1 context MaterialAssociation

2 inv MaterialAssociationConstraint5 *: (self.

associationEnd ->at(1).oclAsType(Property).upper

= self.deriveUpperMaterialAssociationExt1 ())

and (self.associationEnd ->at(2).oclAsType(

Property).upper = self.

deriveUpperMaterialAssociationExt2 ())

• The cardinalities on the source extremity of a derivation relationship are calculated

automatically;

– Formalized as an OCL invariant verified in batch verification:

Listing 79: OCL expression for the first additional constraint on the derivation

relationships.

1 context Derivation

A.2 Definition of Additional Invariants in OCL 172

2 inv DerivationConstraint6 *: (self.source ->any(true)

.oclAsType(Property).lower = self.

deriveLowerDerivation ()) and (self.source ->any(

true).oclAsType(Property).upper = self.

deriveUpperDerivation ())

• There cannot be two «mediation» relationships x and y having the same ground, i.e.,

domain(x) = domain(y) and codomain(x) = codomain(y);

– Formalized as an OCL invariant verified in live verification:

Listing 80: OCL expression for the first additional constraint on the stereotype

«mediation».

1 context Mediation

2 inv MediationConstraint6 *: Mediation.allInstances ()

->excluding(self)->select(x | x.source ->forAll(

y | if y.oclIsKindOf(Property) then (self.

source ->forAll(z | if z.oclIsKindOf(Property)

then ((y.oclAsType(Property).endType = z.

oclAsType(Property).endType) and (y.oclAsType(

Property).endType = z.oclAsType(Property).

endType)) else false endif)) else false endif)

and x.target ->forAll(y | if y.oclIsKindOf(

Property) then (self.target ->forAll(z | if z.

oclIsKindOf(Property) then ((y.oclAsType(

Property).endType = z.oclAsType(Property).

endType) and (y.oclAsType(Property).endType = z

.oclAsType(Property).endType)) else false endif

)) else false endif))->isEmpty ()

• In a relationship stereotyped as «componentOf», «memberOf», «subCollectionOf» or

«subQuantityOf» (i.e., a Meronymic relationship), if the meta-attribute isImmutablePart

= true, then the Properties connected on its target association ends must have the meta-

attribute isReadOnly = true;

– Formalized as an OCL invariant verified in live verification:

A.2 Definition of Additional Invariants in OCL 173

Listing 81: OCL expression for the first additional constraint on the metaclass

Meronymic.

1 context Property

2 inv MeronymicConstraint3 *: (self.isReadOnly = false

) implies (self.target.oclIsKindOf(Meronymic)

implies (self.target.oclAsType(Meronymic).

isImmutablePart = false))

• In a relationship stereotyped as «componentOf», «memberOf», «subCollectionOf» or

«subQuantityOf» (i.e., a Meronymic relationship), if the meta-attribute isInseparable

= true (in case of an anti-rigid class with inseparable parts), then the meta-attribute

isImmutableWhole must also be true;

– Formalized as an OCL invariant verified in batch verification:

Listing 82: OCL expression for the second additional constraint on the metaclass

Meronymic.

1 context Meronymic

2 inv MeronymicConstraint4 *: self.isInseparable

implies self.isImmutableWhole -- Extension of

the second constraint of the metaclass

Meronymic.

• In a relationship stereotyped as «componentOf», «memberOf», «subCollectionOf» or

«subQuantityOf» (i.e., a Meronymic relationship), if the meta-attribute isImmutableWhole

= true, then the Properties connected on its source association ends must have the meta-

attribute isReadOnly = true;

– Formalized as an OCL invariant verified in live verification:

Listing 83: OCL expression for the third additional constraint on the metaclass

Meronymic.

1 context Property

2 inv MeronymicConstraint5 *: (self.isReadOnly = false

) implies (self.source.oclIsKindOf(Meronymic)

A.2 Definition of Additional Invariants in OCL 174

implies (self.source.oclAsType(Meronymic).

isImmutableWhole = false))

• Non-shareability implies a cardinality of exactly one in the extremity connected to the

whole (see Definition 20);

– Formalized as an OCL invariant verified in live verification:

Listing 84: OCL expression for the fourth additional constraint on the metaclass

Meronymic.

1 context Meronymic

2 inv MeronymicConstraint6 *: (self.isShareable =

false) implies self.source ->forAll(x | if x.

oclIsKindOf(Property) then ((x.oclAsType(

Property).lower = 1) and (x.oclAsType(Property)

.upper = 1)) else false endif)

• The minimum cardinality constraint (the meta-attribute lower) must be a natural number

(N) or the least cardinal infinite ℵ0, which is represented as *;

– Formalized as an OCL invariant verified in live verification:

Listing 85: OCL expression for the first additional constraint on the metaclass

Multiplicity Element.

1 context MultiplicityElement

2 inv MultiplicityElementConstraint1: (self.lower >=

0) or (self.lower = -1)

• The maximum cardinality constraint (the meta-attribute upper) must be a natural number

(N) or the least cardinal infinite ℵ0, which is represented as *;

– Formalized as an OCL invariant verified in live verification:

Listing 86: OCL expression for the second additional constraint on the metaclass

Multiplicity Element.

1 context MultiplicityElement

A.2 Definition of Additional Invariants in OCL 175

2 inv MultiplicityElementConstraint2: (self.upper >=

0) or (self.upper = -1)

• A class stereotyped as «structuredDatatype» must have at least two disjoint attributes (a

class can have attributes by means of relationships stereotyped as «structuredDatatype»);

– Formalized as an OCL invariant verified in batch verification:

Listing 87: OCL expression for the first additional constraint on the stereotype

«structuredDatatype».

1 context StructuredDatatype

2 inv StructuredDatatypeConstraint1 *:

DatatypeRelationship.allInstances ()->collect(x

| if x.source ->exists(y | if y.oclIsKindOf(

Property) then (y.oclAsType(Property).endType =

self) else false endif) then x.target ->collect

(z | if z.oclIsKindOf(Property) then (if (z.

oclAsType(Property).lower = -1) then 2 else z.

oclAsType(Property).lower endif) else 0 endif)

->sum() else 0 endif)->sum() >= 2

• A relationship stereotyped as «subQuantityOf» must have the meta-attribute isIm-

mutablePart = true, because these relationships are always essential (i.e., the meta-attribute

isEssential = true);

– Formalized as an OCL invariant verified in live verification:

Listing 88: OCL expression for the first additional constraint on the stereotype

«subQuantityOf».

1 context subQuantityOf

2 inv subQuantityOfConstraint2b *: self.

isImmutablePart = true -- Extension of the

second constraint of the metaclass

subQuantityOf.

A.3 Definition of Additional EOperations in OCL 176

• In a relationship stereotyped as «subQuantityOf», the Properties related to the parts must

have the meta-attribute isReadOnly = true, because these parts are always immutable (i.e.,

the meta-attribute isImmutablePart = true).

– Formalized as an OCL invariant verified in live verification:

Listing 89: OCL expression for the second additional constraint on the stereotype

«subQuantityOf».

1 context Property

2 inv subQuantityOfConstraint2c *: if self.target.

oclIsKindOf(subQuantityOf) then self.isReadOnly

else true endif -- Extension of the second

constraint of the metaclass subQuantityOf.

A.3 Definition of Additional EOperations in OCL

This section documents a set of OCL EOperations created mainly to: (i) support some of the

previous OCL invariants; (ii) support the OCL derivations for some derived EAttributes and

EReferences of the Ecore OntoUML metamodel; and (iii) automatically calculate the values of a

number of meta-attributes, such as the cardinalities of the «material» associations and Derivation

relationships, as shown in the Fig. 41.

Additional EOperations

Listing 90: OCL expression for the EOperation allSuperTypes().

1 context Element :: allSuperTypes ():Bag(Element)

2 body: if self.oclIsKindOf(Classifier) then (if self.

oclAsType(Classifier).generalization ->forAll(x | x.

oclIsUndefined ()) then Set{} else Set{self.oclAsType(

Classifier).generalization ->collect(x | x.general),

self.oclAsType(Classifier).generalization ->collect(x |

if x.general.oclIsKindOf(Classifier) then x.general.

A.3 Definition of Additional EOperations in OCL 177

allSuperTypes () else Set{} endif)}->flatten () endif)

else Set{} endif

Listing 91: OCL expression for the EOperation allSubTypes().

1 context Element :: allSubTypes ():Bag(Element)

2 body: let generalizations : Set(Generalization) =

Generalization.allInstances ()->select(x | x.general =

self) in (if self.oclIsKindOf(Classifier) then (if

generalizations ->forAll(y | y.oclIsUndefined ()) then

Set{} else Set{generalizations ->collect(y | y.specific)

, generalizations ->collect(y | if y.specific.

oclIsKindOf(Classifier) then y.specific.allSubTypes ()

else Set{} endif)}->flatten () endif) else Set{} endif)

Listing 92: OCL expression for the EOperation isConected(x:Element).

1 context Element :: isConected(x:Element):EBoolean

2 body: if self.oclIsKindOf(Relationship) then if self.

oclAsType(Relationship).relatedElement ->forAll(y | y.

oclIsUndefined ()) then false else if self.oclAsType(

Relationship).relatedElement ->exists(z | if z.

oclIsKindOf(Property) then (z.oclAsType(Property).

endType = x) else false endif) then true else self.

oclAsType(Relationship).relatedElement ->exists(w | if w

.oclIsKindOf(Property) then w.oclAsType(Property).

endType.isConected(x) else false endif) endif endif

else false endif

Listing 93: OCL expression for the EOperation subInstanceType(x:Element).

1 context Element :: subInstanceType(x:Element):EBoolean

2 body: self.allSuperTypes ()->includes(x)

Listing 94: OCL expression for the EOperation subMetaTypeKind().

1 context Element :: subMetaTypeKind ():EBoolean

2 body: if self.oclIsKindOf(Kind) then true else self.

allSuperTypes ()->exists(x | x.oclIsKindOf(Kind)) endif

A.3 Definition of Additional EOperations in OCL 178

Listing 95: OCL expression for the EOperation subMetaTypeCollective().

1 context Element :: subMetaTypeCollective ():EBoolean

2 body: if self.oclIsKindOf(Collective) then true else self.

allSuperTypes ()->exists(x | x.oclIsKindOf(Collective))

endif

Listing 96: OCL expression for the EOperation subMetaTypeQuantity().

1 context Element :: subMetaTypeQuantity ():EBoolean

2 body: if self.oclIsKindOf(Quantity) then true else self.

allSuperTypes ()->exists(x | x.oclIsKindOf(Quantity))

endif

Listing 97: OCL expression for the EOperation hasFunctionalComplexesInstances().

1 context Element :: hasFunctionalComplexesInstances ():

EBoolean

2 body: if self.oclIsKindOf(SortalClass) then self.

subMetaTypeKind () else if self.oclIsKindOf(MixinClass)

then Element.allInstances ()->forAll(x | x.

subInstanceType(self) implies not (x.

subMetaTypeQuantity () or x.subMetaTypeCollective ()))

else false endif endif

Listing 98: OCL expression for the EOperation hasCollectivesInstances().

1 context Element :: hasCollectivesInstances ():EBoolean

2 body: if self.oclIsKindOf(SortalClass) then self.

subMetaTypeCollective () else if self.oclIsKindOf(

MixinClass) then Element.allInstances ()->forAll(x | x.

subInstanceType(self) implies not (x.subMetaTypeKind ()

or x.subMetaTypeQuantity ())) else false endif endif

Listing 99: OCL expression for the EOperation hasQuantitiesInstances().

1 context Element :: hasQuantitiesInstances ():EBoolean

2 body: if self.oclIsKindOf(SortalClass) then self.

subMetaTypeQuantity () else if self.oclIsKindOf(

MixinClass) then Element.allInstances ()->forAll(x | x.

subInstanceType(self) implies not (x.subMetaTypeKind ()

or x.subMetaTypeCollective ())) else false endif endif

A.3 Definition of Additional EOperations in OCL 179

Listing 100: OCL expression for the EOperation deriveUpperMaterialAssociationExt1().

1 context MaterialAssociation ::

deriveUpperMaterialAssociationExt1 ():EInt

2 body: let der:Derivation = Derivation.allInstances ()->

select(x | x.source ->any(true).oclAsType(Property).

endType = self)->any(true), matext1:Type = self.

associationEnd ->at(1).oclAsType(Property).endType.

oclAsType(Type), matext2:Type = self.associationEnd ->at

(2).oclAsType(Property).endType.oclAsType(Type) in (let

rel:Relator = der.target ->any(true).oclAsType(Property

).endType.oclAsType(Relator) in (let med1:Set(Mediation

) = Mediation.allInstances ()->select(x | x.source ->

exists(y | y.oclAsType(Property).endType = rel) and x.

target ->exists(y | y.oclAsType(Property).endType =

matext1)), med2:Set(Mediation) = Mediation.allInstances

()->select(x | x.source ->exists(y | y.oclAsType(

Property).endType = rel) and x.target ->exists(y | y.

oclAsType(Property).endType = matext2)) in (let

med1targetupper: Integer = med1.target ->any(true).

oclAsType(Property).upper , med2sourceupper: Integer =

med2.source ->any(true).oclAsType(Property).upper in (if

((med2sourceupper = -1) or (med1targetupper = -1))

then (-1) else (med2sourceupper*med1targetupper) endif)

)))

Listing 101: OCL expression for the EOperation deriveUpperMaterialAssociationExt2().

1 context MaterialAssociation ::

deriveUpperMaterialAssociationExt2 ():EInt

2 body: let der:Derivation = Derivation.allInstances ()->

select(x | x.source ->any(true).oclAsType(Property).

endType = self)->any(true), matext1:Type = self.

associationEnd ->at(1).oclAsType(Property).endType.

oclAsType(Type), matext2:Type = self.associationEnd ->at

(2).oclAsType(Property).endType.oclAsType(Type) in (let

rel:Relator = der.target ->any(true).oclAsType(Property

).endType.oclAsType(Relator) in (let med1:Set(Mediation

A.3 Definition of Additional EOperations in OCL 180

) = Mediation.allInstances ()->select(x | x.source ->

exists(y | y.oclAsType(Property).endType = rel) and x.

target ->exists(y | y.oclAsType(Property).endType =

matext1)), med2:Set(Mediation) = Mediation.allInstances

()->select(x | x.source ->exists(y | y.oclAsType(

Property).endType = rel) and x.target ->exists(y | y.

oclAsType(Property).endType = matext2)) in (let

med1sourceupper: Integer = med1.source ->any(true).

oclAsType(Property).upper , med2targetupper: Integer =

med2.target ->any(true).oclAsType(Property).upper in (if

((med1sourceupper = -1) or (med2targetupper = -1))

then (-1) else (med1sourceupper*med2targetupper) endif)

)))

Listing 102: OCL expression for the EOperation existsDerivationConnected().

1 context MaterialAssociation :: existsDerivationConnected ():

EBoolean

2 body: not Derivation.allInstances ()->select(x | x.source ->

any(true).oclAsType(Property).endType = self)->isEmpty

()

Listing 103: OCL expression for the EOperation deriveLowerDerivation().

1 context Derivation :: deriveLowerDerivation ():EInt

2 body: let mat:MaterialAssociation = self.source ->any(true)

.oclAsType(Property).endType.oclAsType(

MaterialAssociation), rel:Relator = self.target ->any(

true).oclAsType(Property).endType.oclAsType(Relator) in

(let matext1:Type = mat.associationEnd ->at(1).

oclAsType(Property).endType.oclAsType(Type), matext2:

Type = mat.associationEnd ->at(2).oclAsType(Property).

endType.oclAsType(Type) in (let med1:Set(Mediation) =

Mediation.allInstances ()->select(x | x.source ->exists(y

| y.oclAsType(Property).endType = rel) and x.target ->

exists(y | y.oclAsType(Property).endType = matext1)),

med2:Set(Mediation) = Mediation.allInstances ()->select(

x | x.source ->exists(y | y.oclAsType(Property).endType

A.4 Definition of Derived EReferences in OCL 181

= rel) and x.target ->exists(y | y.oclAsType(Property).

endType = matext2)) in (let med1targetlower: Integer =

med1.target ->any(true).oclAsType(Property).lower ,

med2targetlower: Integer = med2.target ->any(true).

oclAsType(Property).lower in (if ((med1targetlower =

-1) or (med2targetlower = -1)) then (-1) else (

med1targetlower*med2targetlower) endif))))

Listing 104: OCL expression for the EOperation deriveUpperDerivation().

1 context Derivation :: deriveUpperDerivation ():EInt

2 body: let mat:MaterialAssociation = self.source ->any(true)

.oclAsType(Property).endType.oclAsType(

MaterialAssociation), rel:Relator = self.target ->any(

true).oclAsType(Property).endType.oclAsType(Relator) in

(let matext1:Type = mat.associationEnd ->at(1).

oclAsType(Property).endType.oclAsType(Type), matext2:

Type = mat.associationEnd ->at(2).oclAsType(Property).

endType.oclAsType(Type) in (let med1:Set(Mediation) =

Mediation.allInstances ()->select(x | x.source ->exists(y

| y.oclAsType(Property).endType = rel) and x.target ->

exists(y | y.oclAsType(Property).endType = matext1)),

med2:Set(Mediation) = Mediation.allInstances ()->select(

x | x.source ->exists(y | y.oclAsType(Property).endType

= rel) and x.target ->exists(y | y.oclAsType(Property).

endType = matext2)) in (let med1targetupper: Integer =

med1.target ->any(true).oclAsType(Property).upper ,

med2targetupper: Integer = med2.target ->any(true).

oclAsType(Property).upper in (if ((med1targetupper =

-1) or (med2targetupper = -1)) then (-1) else (

med1targetupper*med2targetupper) endif))))

A.4 Definition of Derived EReferences in OCL

This section documents a set of OCL derivations that specify how the derived meta-relations of

the OntoUML metamodel get their values.

A.4 Definition of Derived EReferences in OCL 182

Definition of Derived EAttributes and EReferences

Listing 105: OCL expression for the derived EReference “attribute” of the metaclass Classifier.

1 context Classifier :: attribute:Bag(Property)

2 derive: DatatypeRelationship.allInstances ()->select(x | if

x.source ->forAll(y | y.oclIsKindOf(Property)) then x.

source ->exists(y | y.oclAsType(Property).endType = self

) else false endif)->collect(x | if x.target ->forAll(y

| y.oclIsKindOf(Property)) then x.target.oclAsType(

Property) else null endif)

Listing 106: OCL expression for the derived EReference “general” of the metaclass Classifier.

1 context Classifier :: general:Bag(Classifier)

2 derive: self.allSuperTypes ()

Listing 107: OCL expression for the derived EReference “generalization” of the metaclass

Classifier.

1 context Classifier :: generalization:Bag(Generalization)

2 derive: Generalization.allInstances ()->select(x | x.

specific = self)

Listing 108: OCL expression for the derived EReference “specific” of the metaclass

Generalization.

1 context Generalization :: specific:Classifier

2 derive: self.target ->any(x | x.oclIsKindOf(Classifier))

Listing 109: OCL expression for the derived EReference “general” of the metaclass

Generalization.

1 context Generalization :: general:Classifier

2 derive: self.source ->any(x | x.oclIsKindOf(Classifier))

Listing 110: OCL expression for the derived EReference “endType” of the metaclass Property.

1 context Property :: endType:Type

A.4 Definition of Derived EReferences in OCL 183

2 derive: if self.source ->notEmpty () then (if self.source.

sourceAux1 ->forAll(x | x.oclIsKindOf(Type)) then self.

source.sourceAux1.oclAsType(Type)->any(true) else null

endif) else if self.target ->notEmpty () then (if self.

target.targetAux1 ->forAll(x | x.oclIsKindOf(Type)) then

self.target.targetAux1.oclAsType(Type)->any(true) else

null endif) else if (self.associationEndPositionAux =

1) then self.associationEnd.associationEndAux1 ->any(

true) else if (self.associationEndPositionAux = 2) then

self.associationEnd.associationEndAux2 ->any(true) else

null endif endif endif endif

Listing 111: OCL expression for the derived EReference “source” of the metaclass Property.

1 context Property :: source:DirectedBinaryRelationship

2 derive: DirectedBinaryRelationship.allInstances ()->any(x |

x.source ->includes(self) or x.sourceAux2 ->includes(

self))

Listing 112: OCL expression for the derived EReference “target” of the metaclass Property.

1 context Property :: target:DirectedBinaryRelationship

2 derive: DirectedBinaryRelationship.allInstances ()->any(x |

x.target ->includes(self) or x.targetAux2 ->includes(

self))

Listing 113: OCL expression for the derived EReference “relatedElement” of the metaclass

Relationship.

1 context Relationship :: relatedElement:Bag(Element)

2 derive: if self.oclIsKindOf(Association) then self.

oclAsType(Association).associationEnd else if self.

oclIsKindOf(DirectedRelationship) then Set{self.

oclAsType(DirectedRelationship).source , self.oclAsType(

DirectedRelationship).target}->flatten () else null

endif endif

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 184

A.5 Definition of the Automatic Calculation of some
Meta-Attributes’ Values in OCL

This section documents a set of OCL expressions for the automatic initialization or modification

of a number of meta-attributes’ values, as well as the explanations of the reasons of the pertinence

of each of those meta-attributes in the two categories of meta-attributes shown in subsection

4.3.3.

The meta-attributes in the first category are:

• isAbstract (of the metaclass Classifier): The meta-attribute isAbstract must always have

the value “true” for instances of the metaclass Mixin Class (due to the second syntactical

constraint for the metaclass Mixin Class, shown in page 39 and formalized in OCL in

Listing 27). Therefore, we initialize isAbstract with “true” in the creation of a Mixin Class;

• lower (of the metaclass MultiplicityElement):

– For Mediation relationships, the meta-attribute lower of the Property in the association

end connected to the mediated universal (the target association end) must be at least

“1” (due to the second syntactical constraint for the metaclass Mediation, shown in

page 48 and formalized in OCL in Listing 36). Therefore, we initialize lower with

“1” in the creation of a Property which target meta-relation points to a Mediation

relationship;

– For Mediation relationships, the meta-attribute lower of the Property in the association

end connected to the relator universal (the source association end) must be at least

“1” (due to the fourth syntactical constraint for the metaclass Mediation, shown in

page 48 and formalized in OCL in Listing 38). Therefore, we initialize lower with

“1” in the creation of a Property which source meta-relation points to a Mediation

relationship;

– For Characterization relationships, the meta-attribute lower of the Property in the

association end connected to the characterized universal (the target association

end) must be “1” (due to the second syntactical constraint for the metaclass

Characterization, shown in page 48 and formalized in OCL in Listing 41). Therefore,

we initialize lower with “1” in the creation of a Property which target meta-relation

points to a Characterization relationship;

– For Characterization relationships, the meta-attribute lower of the Property in

the association end connected to the characterizing quality universal (the source

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 185

association end) must be at least “1” (due to the third syntactical constraint for the

metaclass Characterization, shown in page 48 and formalized in OCL in Listing 42).

Therefore, we initialize lower with “1” in the creation of a Property which source

meta-relation points to a Characterization relationship;

– For Derivation relationships, the meta-attribute lower of the Property in the black

circle end of the Derivation relation (the target association end) must be “1” (due

to the third syntactical constraint for the metaclass Derivation, shown in page 49

and formalized in OCL in Listing 47). Therefore, we initialize lower with “1” in the

creation of a Property which target meta-relation points to a Derivation relationship;

– For Derivation relationships, the meta-attribute lower of the Property in the

association end connected to the Material Association (the source association end)

is a product of the cardinality constraints of the Mediation relations of the Relator

Universal that this Material Association derives from (as shown in Fig. 41). However,

since Mediation relationships require a minimum cardinality of one on both of its

association ends, then the minimum cardinality on the Material Association end of

a Derivation relation must also be ≥ 1 (due to the fifth syntactical constraint for

the metaclass Derivation, shown in page 49 and formalized in OCL in Listing 49).

Therefore, we initialize lower with “1” in the creation of a Property which source

meta-relation points to a Derivation relationship;

– For Material Associations, the meta-attribute lower of the Properties in its association

ends are derived from the cardinality constraints of the Mediation relations of the

Relator Universal that this Material Association is derived from (as shown in Fig.

41). However, since Mediation relationships require a minimum cardinality of one

on both of its association ends, then the minimum cardinality constraint on each end

of the derived Material Association must also be ≥ 1 (due to the second syntactical

constraint for the metaclass Material Association, shown in page 50 and formalized

in OCL in Listing 51). Therefore, we initialize lower with “1” in the creation of a

Property which associationEnd meta-relation points to a Material Association;

– For Datatype Relationships, the meta-attribute lower of the Property in the target

association end must be “1” (due to the first syntactical constraint for the metaclass

Property, shown in page 50 and formalized in OCL in Listing 53). Therefore, we

initialize lower with “1” in the creation of a Property which target meta-relation

points to a Datatype Relationship;

• upper (of the metaclass MultiplicityElement):

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 186

– For Characterization relationships, the meta-attribute upper of the Property in the

association end connected to the characterized universal (the target association

end) must be “1” (due to the second syntactical constraint for the metaclass

Characterization, shown in page 48 and formalized in OCL in Listing 41). Therefore,

we initialize lower with “1” in the creation of a Property which target meta-relation

points to a Characterization relationship;

– For Derivation relationships, the meta-attribute upper of the Property in the black

circle end of the Derivation relation (the target association end) must be “1” (due

to the third syntactical constraint for the metaclass Derivation, shown in page 49

and formalized in OCL in Listing 47). Therefore, we initialize upper with “1” in the

creation of a Property which target meta-relation points to a Derivation relationship;

– For subQuantityOf relationships, the meta-attribute upper of the Property in the

association end connected to the part (the target association end) must be “1” (due

to the third syntactical constraint for the metaclass subQuantityOf, shown in page

56 and formalized in OCL in Listing 59). Therefore, we initialize upper with “1”

in the creation of a Property which target meta-relation points to a subQuantityOf

relationship;

– For subCollectionOf relationships, the meta-attribute upper of the Property in the

association end connected to the part (the target association end) must be “1” (due to

the second syntactical constraint for the metaclass subCollectionOf, shown in page

57 and formalized in OCL in Listing 62). Therefore, we initialize upper with “1”

in the creation of a Property which target meta-relation points to a subCollectionOf

relationship;

• isReadOnly (of the metaclass StructuralFeature):

– For Mediation relationships, the Property in the target association end must have

the meta-attribute isReadOnly = “true” (due to the third syntactical constraint for

the metaclass Mediation, shown in page 48 and formalized in OCL in Listing 37).

Therefore, we initialize isReadOnly with “true” in the creation of a Property which

target meta-relation points to a Mediation relationship;

– For Characterization relationships, the Property in the association end connected to

the characterized universal (the target association end) must have the meta-attribute

isReadOnly = “true” (due to the fourth syntactical constraint for the metaclass

Characterization, shown in page 48 and formalized in OCL in Listing 43). Therefore,

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 187

we initialize isReadOnly with “true” in the creation of a Property which target

meta-relation points to a Characterization relationship;

– For Derivation relationships, the Property in the black circle end of the Derivation

relation (the target association end) must have the meta-attribute isReadOnly = “true”

(due to the fourth syntactical constraint for the metaclass Derivation, shown in page

49 and formalized in OCL in Listing 48). Therefore, we initialize isReadOnly with

“true” in the creation of a Property which target meta-relation points to a Derivation

relationship;

– For subQuantityOf relationships, the Property in the association end connected to the

part (the target association end) must have the meta-attribute isReadOnly = “true”

(due to the second additional syntactical constraint for the metaclass subQuantityOf,

shown in page 72 and formalized in OCL in Listing 89). Therefore, we initialize

isReadOnly with “true” in the creation of a Property which target meta-relation points

to a subQuantityOf relationship;

• isDerived (of the metaclass Association): The meta-attribute isDerived must always be true

for instances of the metaclass Material Association (due to the third syntactical constraint

for the metaclass Material Association, shown in page 50 and formalized in OCL in

Listing 52). Therefore, we initialize isDerived with “true” in the creation of a Material

Association;

• isShareable (of the metaclass Meronymic): The meta-attribute isShareable must always be

“false” for instances of the metaclass subQuantityOf (due to the first syntactical constraint

for the metaclass subQuantityOf, shown in page 56 and formalized in OCL in Listing

57). Therefore, we initialize isShareable with “false” in the creation of a subQuantityOf

relationship;

• isEssential (of the metaclass Meronymic): The meta-attribute isEssential must always be

“true” for instances of the metaclass subQuantityOf because all Quantities are extensional

individuals (due to the second syntactical constraint for the metaclass subQuantityOf,

shown in page 56 and formalized in OCL in Listing 58). Therefore, we initialize isEssential

with “true” in the creation of a subQuantityOf relationship;

• isDerived (of the metaclass Property): For Material Associations, the meta-attribute

isDerived of the Properties in its association ends must always be “true” (due to the first

additional syntactical constraint for the metaclass Material Association, shown in page

71 and formalized in OCL in Listing 77). Therefore, we initialize isDerived with “true”

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 188

in the creation of a Property which associationEnd meta-relation points to a Material

Association;

• isImmutablePart (of the metaclass Meronymic): The meta-attribute isImmutablePart must

always be “true” for instances of the metaclass subQuantityOf because isEssential is

always “true” for this individuals (due to the first additional syntactical constraint for

the metaclass subQuantityOf, shown in page 72 and formalized in OCL in Listing 88).

Therefore, we initialize isImmutablePart with “true” in the creation of a subQuantityOf

relationship;

The meta-attributes in the second category are:

• lower (of the metaclass MultiplicityElement): For a Derivation relationship d, the meta-

attribute lower of the Property in its source association end is systematically calculated

from the cardinalities of the Mediation relationships that are relating (i) the Relator in the

black circle end (the target association end) of d and (ii) a Classifier in an association end of

the Material Association that is in the source association end of d, as shown in Fig. 41 and

implemented in OCL as shown in Listing 103. Therefore, we initialize the value of lower

with the value calculated from the formulæ shown in Fig. 41, in the creation of a Derivation

relationship. Moreover, when the user updates the values of the cardinalities of the related

Mediation relationships, we automatically modify the value of lower. Additionally, the

first additional syntactical constraint for the metaclass Derivation, shown in page 71 and

formalized in OCL in Listing 79, is used to guarantee the consistence of the model when

the user manually sets the value of the meta-attribute lower of the Property in the source

association end of a Derivation relationship;

• upper (of the metaclass MultiplicityElement):

– For a Material Association m, the meta-attribute upper of the Properties in its

association ends are systematically calculated from the cardinalities of the Mediation

relationships that are relating (i) the Relator in the black circle end (the target

association end) of the Derivation relation connected to m and (ii) a Classifier in an

association end of m, as shown in Fig. 41 and implemented in OCL as shown in

Listings 100 and 101. Therefore, when the user creates a Derivation relationship

between m and a Relator, or when he/she updates the values of the cardinalities of

the related Mediation relationships, we automatically modify the value of upper with

the value calculated from the formulæ shown in Fig. 41. Additionally, the second

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 189

Figure 41: Calculus of the cardinalities (69, p. 533). In this figure, the × operator is the
multiplication operator between natural numbers.

additional syntactical constraint for the metaclass Material Association, shown in

page 71 and formalized in OCL in Listing 78, is used to guarantee the consistence of

the model when the user manually sets the value of the meta-attribute upper;

– For a Derivation relationship d, the meta-attribute upper of the Property in its source

association end is systematically calculated from the cardinalities of the Mediation

relationships that are relating (i) the Relator in the black circle end (the target

association end) of d and (ii) a Classifier in an association end of the Material

Association that is in the source association end of d, as shown in Fig. 41 and

implemented in OCL as shown in Listing 104. Therefore, we initialize the value

of upper with the value calculated from the formulæ shown in Fig. 41, in the

creation of a Derivation relationship. Moreover, when the user updates the values

of the cardinalities of the related Mediation relationships, we automatically modify

the value of upper. Additionally, the first additional syntactical constraint for the

metaclass Derivation, shown in page 71 and formalized in OCL in Listing 79, is used

to guarantee the consistence of the model when the user manually sets the value of

the meta-attribute upper of the Property in the source association end of a Derivation

relationship;

• isEssential (of the metaclass Meronymic): For every Collective c, when the value of the

meta-attribute isExtensional is “true”, the value of the meta-attribute isEssential of all

Meronymic relationships having c in their source association end must be “true” (due to the

first syntactical constraint for the metaclass Collective, shown in page 37 and formalized

in OCL in Listing 21). Therefore, when the user updates the value of isExtensional to

“true”, we automatically modify the value of isEssential to “true” in all related Meronymic

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 190

relationships3; or if a Meronymic relationship m is created having an extensional Collective

(isExtensional’s value is “true”) in its source, the value of the meta-attribute isEssential of

m is automatically set to “true”, as shown in Listing 114;

Listing 114: OCL expression for the initialization of the value of the meta-attribute

isEssential of memberOf and subCollectionOf relationships.

1 if self.source ->forAll(x | if x.oclIsKindOf(Property

) then (if x.oclAsType(Property).endType.

oclIsKindOf(Collective) then x.oclAsType(Property

).endType.oclAsType(Collective).isExtensional

else false endif) else false endif) then true

else false endif

• isImmutablePart (of the metaclass Meronymic): For every Meronymic relationship,

if the value of the meta-attribute isEssential is “true”, the value of the meta-attribute

isImmutablePart must also be “true” (due to the second syntactical constraint for the

metaclass Meronymic, shown in page 55 and formalized in OCL in Listing 55). Therefore,

when the user updates the value of isEssential to “true”, we automatically modify the value

of isImmutablePart to “true”;

• isExtensional (of the metaclass Collective): For every memberOf relationship, if the value

of the meta-attribute isEssential is “true”, the value of the meta-attribute isExtensional of

the whole (the Classifier in the source association end) must also be “true” (due to the first

syntactical constraint for the metaclass memberOf, shown in page 58 and formalized in

OCL in Listing 63). Therefore, when the user updates the value of isEssential to “true”,

we automatically modify the value of isExtensional to “true” in the whole;

• isReadOnly (of the metaclass StructuralFeature):

– For every Datatype Relationship, if there is a StructuredDatatype in its source

association end, the value of the meta-attribute isReadOnly of the Property in the

target association end must be “true” (due to the third additional syntactical constraint

for the metaclass Datatype Relationship, shown in page 70 and formalized in OCL

in Listing 68). Therefore, when the user creates a Datatype Relationship having a

3Only for the memberOf and the subCollectionOf relationships, because a Collective cannot be in an association
end of a componentOf or a subQuantityOf relationship due to the first syntactical constraint for the metaclass
componentOf, shown in page 56 and formalized in OCL in Listing 56 and the fourth syntactical constraint for the
metaclass subQuantityOf, shown in page 56 and formalized in OCL in Listing 60.

A.5 Definition of the Automatic Calculation of some Meta-Attributes’ Values in OCL 191

StructuredDatatype in its source association end, we automatically modify the value

of isReadOnly to “true” in the Property in the target association end, as shown in

Listing 115;

Listing 115: OCL expression for the initialization of the value of the meta-attribute

isReadOnly of the Property in the target association end of a Datatype Relationship

in the creation of the latter.

1 if (self.target.oclIsKindOf(

DatatypeRelationship)) then (if (self.

target.source ->forAll(x | if (x.oclIsKindOf

(Property)) then (x.oclAsType(Property).

endType.oclIsKindOf(StructuralDatatype))

else false endif)) then true else false

endif) else false endif

– For every Meronymic relationship, if the value of the meta-attribute isImmutablePart

is “true”, the value of the meta-attribute isReadOnly in the Property in the target

association end must also be “true” (due to the first additional syntactical constraint

for the metaclass Meronymic, shown in page 72 and formalized in OCL in Listing

81). Therefore, when the user updates the value of isImmutablePart to “true”, we

automatically modify the value of isReadOnly to “true” in the Property in the target

association end;

– For every Meronymic relationship, if the value of the meta-attribute isImmutable-

Whole is “true”, the value of the meta-attribute isReadOnly in the Property in the

source association end must also be “true” (due to the third additional syntactical

constraint for the metaclass Meronymic, shown in page 72 and formalized in OCL

in Listing 83). Therefore, when the user updates the value of isImmutableWhole to

“true”, we automatically modify the value of isReadOnly to “true” in the Property in

the source association end;

• isImmutableWhole (of the metaclass Meronymic): For every Meronymic relationship,

if the value of the meta-attribute isInseparable is “true”, the value of the meta-attribute

isImmutableWhole must also be “true” (due to the second additional syntactical constraint

for the metaclass Meronymic, shown in page 72 and formalized in OCL in Listing 82).

Therefore, when the user updates the value of isInseparable to “true”, we automatically

modify the value of isImmutableWhole to “true”;

192

APPENDIX B -- Implementing The Mapping as
an ATL Model Transformation

The purpose of this chapter is to document our implementation of all the mappings from

OntoUML to Alloy, which were discussed in section 5.5 as an ATL (see section 2.2.4) automatic

transformation. This transformation receives the OntoUML metamodel (Fig. 19) and a source

OntoUML model as inputs and creates an Alloy specification as its output.

As we had no metamodel of the Alloy language, here, we make use of the imperative

constructs of ATL in order to transform an OntoUML model into an Alloy specification.

Therefore, we do not map the OntoUML metamodel to an Alloy metamodel, instead, we

use the ATL engine to search for certain patterns in OntoUML models and imperatively build

the Alloy counterparts.

This ATL transformation is show in Listing 116 and is a FOSS licensed under GPLv3 (see

annex A).

For explanations on how to install and use this transformation within the ATL Eclipse

plug-in, see appendix D.

Listing 116: The ATL transformation.

1 -- @path OntoUML =/ OntoUML2Alloy/OntoUML.ecore

2

3 module OntoUML2Alloy; -- Module Template

4 create OUT : OntoUML refining IN : OntoUML;

5

6 helper def: path : String = '/OntoUML2Alloy/specification.

als';

7 helper def: signature_text : String = '';

8 helper def: relation_relations : String = '';

9 helper def: directedbinaryrelationship_generalization () :

String = OntoUML!DirectedBinaryRelationship.

Appendix B -- Implementing The Mapping as an ATL Model Transformation 193

allInstances ()->select(x | not x.source ->exists(y | if

y.oclIsKindOf(OntoUML!Property) then (thisModule.

derive_endType(y).oclIsKindOf(OntoUML!

StructuralDatatype)) else false endif))->iterate(x;

directedbinaryrelationship: String = '' | let gen :

OrderedSet(OntoUML!Classifier) = thisModule.

derive_generalization(x)->collect(y | thisModule.

derive_general(y)) in (if (gen.size() > 0) then (

directedbinaryrelationship + ' ' + x.name + ' in ' +

thisModule.names_disjunction_set2(gen) + '\n') else

directedbinaryrelationship endif));

10 helper def: association_generalization () : String =

OntoUML!Association.allInstances ()->iterate(x;

association: String = '' | let gen : OrderedSet(OntoUML

!Classifier) = thisModule.derive_generalization(x)->

collect(y | thisModule.derive_general(y)) in (if (gen.

size() > 0) then (association + ' ' + x.name + ' in ' +

thisModule.names_disjunction_set2(gen) + '\n') else

association endif));

11 helper def: relation_generalization () : String =

thisModule.directedbinaryrelationship_generalization ()

+ thisModule.association_generalization ();

12 helper def: signature_names () : String = thisModule.

names_union_set(OntoUML!SubstanceSortal.allInstances ()

->union(OntoUML!MomentClass.allInstances ()));

13 helper def: relation_phases () : String = OntoUML!

GeneralizationSet.allInstances ()->select(x | if (x.

generalization.size() > 0) then (if (x.generalization ->

forAll(y | thisModule.derive_specific(y).oclIsKindOf(

OntoUML!Phase))) then true else false endif) else false

endif)->iterate(x; phase_generalizationset: String = '

' | phase_generalizationset + ' disj ' + thisModule.

names_list(x.generalization ->iterate(y; phases:

OrderedSet(OntoUML!Phase) = OrderedSet {} | phases.

including(thisModule.derive_specific(y)))) + ': set ' +

Appendix B -- Implementing The Mapping as an ATL Model Transformation 194

thisModule.derive_general(x.generalization ->any(y |

true)).name + (if (thisModule.derive_general(x.

generalization ->any(y | true)).oclIsKindOf(OntoUML!

SubstanceSortal)) then ' :> domain_of_quantification ,\n

' else ',\n' endif));

14 helper def: relation_roles () : String = OntoUML!Role.

allInstances ()->iterate(x; role: String = '' | let gen

: OrderedSet(OntoUML!Generalization) = thisModule.

derive_generalization(x)->collect(y | thisModule.

derive_general(y)) in (role + ' ' + x.name + ': set '

+ thisModule.names_disjunction_set2(gen) + ',\n'));

15 helper def: relation_mixins () : String = OntoUML!Mixin.

allInstances ()->iterate(x; mixin: String = '' | mixin +

' ' + x.name + ': set ' + thisModule.

subTypes_name_union_set_special_rigid_sortal_subtypes(x

) + ',\n');

16 helper def: relation_rolemixins () : String = OntoUML!

RoleMixin.allInstances ()->iterate(x; rolemixin: String

= '' | rolemixin + ' ' + x.name + ': set ' +

thisModule.subTypes_name_union_set(x) + ',\n');

17 helper def: signature_declarations_world () : String = '

abstract sig World {\n domain_of_quantification: some (

' + thisModule.signature_names () + ') ,\n' + thisModule.

relation_phases () + thisModule.relation_roles () +

thisModule.relation_mixins () + thisModule.

relation_rolemixins () + thisModule.relation_relations +

'}';

18 helper def: signature_facts_world : String = '\n' +

thisModule.relation_generalization ();

19 helper def: signature_world () : String = thisModule.

signature_declarations_world () + if (thisModule.

signature_facts_world <> '') then ('{' + thisModule.

signature_facts_world + '}') else '' endif;

20 helper def: function_text : String = '';

21 helper def: fact_text : String = '';

Appendix B -- Implementing The Mapping as an ATL Model Transformation 195

22 helper def: pairwise_disjoint_Classifiers : String = '';

23 helper def: command_text : String = '';

24 helper def: final_text () : String = thisModule.

signature_text + '\n' + thisModule.function_text + '\n'

+ thisModule.signature_world () + '\n' + thisModule.

pairwise_disjoint_Classifiers + '\n' + thisModule.

fact_text + '\n' + thisModule.command_text;

25

26 helper def: derive_source(p: OntoUML!Property) : OntoUML!

DirectedBinaryRelationship = OntoUML!

DirectedBinaryRelationship.allInstances ()->any(x | x.

source ->includes(p) or x.sourceAux2 ->includes(p));

27 helper def: derive_target(p: OntoUML!Property) : OntoUML!

DirectedBinaryRelationship = OntoUML!

DirectedBinaryRelationship.allInstances ()->any(x | x.

target ->includes(p) or x.targetAux2 ->includes(p));

28 helper def: derive_endType(p: OntoUML!Property) : OntoUML!

Type = if (not thisModule.derive_source(p)->

oclIsUndefined ()) then (if thisModule.derive_source(p).

sourceAux1 ->forAll(x | x.oclIsKindOf(OntoUML!Type))

then thisModule.derive_source(p).sourceAux1 ->any(x |

true) else OclUndefined endif) else if (not thisModule.

derive_target(p)->oclIsUndefined ()) then (if thisModule

.derive_target(p).targetAux1 ->forAll(x | x.oclIsKindOf(

OntoUML!Type)) then thisModule.derive_target(p).

targetAux1 ->any(x | true) else OclUndefined endif) else

if (p.associationEndPositionAux = 1) then p.

associationEnd.associationEndAux1 ->any(x | true) else

if (p.associationEndPositionAux = 2) then p.

associationEnd.associationEndAux2 ->any(x | true) else

OclUndefined endif endif endif endif;

29 helper def: derive_specific(g: OntoUML!Generalization) :

OntoUML!Classifier = g.target ->any(x | x.oclIsKindOf(

OntoUML!Classifier));

30 helper def: derive_general(g: OntoUML!Generalization) :

Appendix B -- Implementing The Mapping as an ATL Model Transformation 196

OntoUML!Classifier = g.source ->any(x | x.oclIsKindOf(

OntoUML!Classifier));

31 helper def: derive_generalization(c: OntoUML!Classifier) :

OrderedSet(OntoUML!Generalization) = OntoUML!

Generalization.allInstances ()->select(x | thisModule.

derive_specific(x) = c);

32 helper def: allSuperTypes(c: OntoUML!Classifier) :

OrderedSet(OntoUML!Element) = if thisModule.

derive_generalization(c)->forAll(x | x.oclIsUndefined ()

) then Set{} else Set{thisModule.derive_generalization(

c)->collect(x | thisModule.derive_general(x)),

thisModule.derive_generalization(c)->collect(x | if

thisModule.derive_general(x).oclIsKindOf(OntoUML!

Classifier) then thisModule.allSuperTypes(thisModule.

derive_general(x)) else Set{} endif)}->flatten () endif;

33

34 helper def: names_list(os: OrderedSet(OntoUML!NamedElement

)) : String = let names: String = os->iterate(x; names:

String = '' | names + x.name + ', ') in (if (names.

size() > 0) then names.substring (1,(names.size() -2))

else '' endif);

35 helper def: names_union_set(os: OrderedSet(OntoUML!

NamedElement)) : String = let names: String = os ->

iterate(x; names: String = '' | names + x.name + ' + ')

in (if (names.size() > 0) then names.substring (1,(

names.size() -3)) else '' endif);

36 helper def: names_union_set_special_rigid_sortal_subtypes(

os: OrderedSet(OntoUML!NamedElement)) : String = let

names: String = os->iterate(x; names: String = '' | if

(x.oclIsKindOf(OntoUML!RigidSortalClass)) then (names +

x.name + ':>domain_of_quantification + ') else (names

+ x.name + ' + ') endif) in (if (names.size() > 0) then

names.substring (1,(names.size() -3)) else '' endif);

37 helper def: names_disjunction_set(os: OrderedSet(OntoUML!

NamedElement)) : String = let names: String = os ->

Appendix B -- Implementing The Mapping as an ATL Model Transformation 197

iterate(x; names: String = '' | names + x.name + ' & ')

in (if (names.size() > 0) then names.substring (1,(

names.size() -3)) else '' endif);

38 helper def: domain_function(e: OntoUML!Element): String =

if (e.oclIsKindOf(OntoUML!SubstanceSortal) or e.

oclIsKindOf(OntoUML!Relator) or e.oclIsKindOf(OntoUML!

Mode)) then ':>domain_of_quantification ' else '' endif;

39 helper def: names_disjunction_set2(os: OrderedSet(OntoUML!

NamedElement)) : String = let names: String = os->

iterate(x; names: String = '' | names + x.name +

thisModule.domain_function(x) + ' & ') in (if (names.

size() > 0) then names.substring (1,(names.size() -3))

else '' endif);

40

41 helper def: superTypes_set(e: OntoUML!Element) :

OrderedSet(OntoUML!Element) = OntoUML!Generalization.

allInstances ()->select(x | x.target ->any(y | true) = e)

->collect(x | x.source)->flatten ();

42 helper def: superTypes_name_list(e: OntoUML!Element) :

String = thisModule.names_list(thisModule.

superTypes_set(e));

43 helper def: superTypes_name_union_set(e: OntoUML!Element)

: String = thisModule.names_union_set(thisModule.

superTypes_set(e));

44 helper def: superTypes_name_disjunction_set(e: OntoUML!

Element) : String = thisModule.names_disjunction_set(

thisModule.superTypes_set(e));

45 helper def: superTypes_set_equality(e1: OntoUML!Element ,

e2: OntoUML!Element) : Boolean = thisModule.

superTypes_set(e1).asSet() = thisModule.superTypes_set(

e2).asSet();

46 helper def: classifiers_with_same_supertypes : Set(Set(

OntoUML!Element)) = let c: Set(OntoUML!Classifier) =

OntoUML!Classifier.allInstances () in (c->iterate(x; acc

: Set(Set(OntoUML!Element)) = Set{} | acc ->including(c

Appendix B -- Implementing The Mapping as an ATL Model Transformation 198

->select(y | thisModule.superTypes_set_equality(x,y))->

asSet())));

47 helper def: subTypes_set(e: OntoUML!Element) : OrderedSet(

OntoUML!Element) = OntoUML!Generalization.allInstances

()->select(x | x.source ->any(y | true) = e)->collect(x

| x.target)->flatten ();

48 helper def: subTypes_name_union_set(e: OntoUML!Element) :

String = thisModule.names_union_set(thisModule.

subTypes_set(e));

49 helper def:

subTypes_name_union_set_special_rigid_sortal_subtypes(e

: OntoUML!Element) : String = thisModule.

names_union_set_special_rigid_sortal_subtypes(

thisModule.subTypes_set(e));

50 helper def: generalization_Sets_of_superTypes_of(c:

OntoUML!Classifier) : OrderedSet(OntoUML!

GeneralizationSet) = OntoUML!Generalization.

allInstances ()->select(x | x.target ->any(y | true) = c)

->collect(x | x.generalizationSet)->flatten ();

51 helper def: generalization_Sets_of_subKinds_subTypes_of(c:

OntoUML!Classifier) : OrderedSet(OntoUML!

GeneralizationSet) = OntoUML!Generalization.

allInstances ()->select(x | (x.source ->any(y | true) = c

) and (x.target ->forAll(y | y.oclIsKindOf(OntoUML!

SubKind))))->collect(x | x.generalizationSet)->flatten

();

52 helper def: generalization_relational_constraint(set:

OrderedSet(OntoUML!Classifier)) : String = set ->iterate

(x; str: String = '' | let gen : OrderedSet(OntoUML!

Generalization) = thisModule.derive_generalization(x)->

collect(y | thisModule.derive_general(y)) in (if (gen.

size() > 0) then (str + ' ' + x.name + ' in ' +

thisModule.names_disjunction_set2(gen) + '\n') else str

endif)); -- For a set of relations.

53 helper def: top_level_rigid_sortals_connected_on_source(d:

Appendix B -- Implementing The Mapping as an ATL Model Transformation 199

OntoUML!DirectedRelationship) : OrderedSet(OntoUML!

Classifier) = thisModule.allSuperTypes(thisModule.

derive_endType(d.source ->any(x | true)))->including(

thisModule.derive_endType(d.source ->any(x | true)))->

select(x | x.oclIsKindOf(OntoUML!SubstanceSortal) or x.

oclIsKindOf(OntoUML!MomentClass) or x.oclIsKindOf(

OntoUML!Datatype));

54 helper def: top_level_rigid_sortals_connected_on_target(d:

OntoUML!DirectedRelationship) : OrderedSet(OntoUML!

Classifier) = thisModule.allSuperTypes(thisModule.

derive_endType(d.target ->any(x | true)))->including(

thisModule.derive_endType(d.target ->any(x | true)))->

select(x | x.oclIsKindOf(OntoUML!SubstanceSortal) or x.

oclIsKindOf(OntoUML!MomentClass) or x.oclIsKindOf(

OntoUML!Datatype));

55 helper def:

top_level_rigid_sortals_connected_on_associationEnd(d:

OntoUML!DirectedRelationship , i : Integer) : OrderedSet

(OntoUML!Classifier) = thisModule.allSuperTypes(

thisModule.derive_endType(d.associationEnd ->at(i)))->

including(thisModule.derive_endType(d.associationEnd ->

at(i)))->select(x | x.oclIsKindOf(OntoUML!

SubstanceSortal) or x.oclIsKindOf(OntoUML!MomentClass)

or x.oclIsKindOf(OntoUML!Datatype));

56

57 helper def: is_top_level(e: OntoUML!Element) : Boolean =

if (e.oclIsKindOf(OntoUML!SubstanceSortal) or e.

oclIsKindOf(OntoUML!MomentClass)) then true else false

endif;

58 helper def: name_side_source(e: OntoUML!Element) : String

= let side: OntoUML!Element = thisModule.derive_endType

(e.source ->any(x | true)) in (if (thisModule.

is_top_level(side)) then (side.name + ':>

domain_of_quantification ') else (side.name) endif);

59 helper def: name_side_target(e: OntoUML!Element) : String

Appendix B -- Implementing The Mapping as an ATL Model Transformation 200

= let side: OntoUML!Element = thisModule.derive_endType

(e.target ->any(x | true)) in (if (thisModule.

is_top_level(side)) then (side.name + ':>

domain_of_quantification ') else (side.name) endif);

60 helper def: name_side_associationEnd(e: OntoUML!Element , i

: Integer) : String = let side: OntoUML!Element =

thisModule.derive_endType(e.associationEnd ->at(i)) in (

if (thisModule.is_top_level(side)) then (side.name + '

:>domain_of_quantification ') else (side.name) endif);

61

62 helper def: cardinality(p: OntoUML!Property) : String = if

((p.lower = 0) and (p.upper = 1)) then 'lone' else (if

((p.lower = 1) and (p.upper = 1)) then 'one' else (if

((p.lower = 1) and (p.upper = 0-1)) then 'some' else '

set' endif) endif) endif;

63 helper def: cardinality_fact1(name_relation: String ,

name_side: String , p: OntoUML!Property) : String = if (

p.lower = 0) then (if (p.upper = 0-1) then '' else ('

all x: ' + name_side + ' | #' + name_relation + '.x <=

' + p.upper.toString ()) endif) else (if (p.upper = 0-1)

then (' all x: ' + name_side + ' | #' + name_relation

+ '.x >= ' + p.lower.toString ()) else (if (p.lower <>

p.upper) then (' all x: ' + name_side + ' | (#' +

name_relation + '.x >= ' + p.lower.toString () + ') and

(#' + name_relation + '.x <= ' + p.upper.toString () + '

)') else (' all x: ' + name_side + ' | #' +

name_relation + '.x = ' + p.lower.toString ()) endif)

endif) endif;

64 helper def: cardinality_fact2(name_relation: String ,

name_side: String , p: OntoUML!Property) : String = if (

p.lower = 0) then (if (p.upper = 0-1) then '' else ('

all x: ' + name_side + ' | #x.' + name_relation + ' <=

' + p.upper.toString ()) endif) else (if (p.upper = 0-1)

then (' all x: ' + name_side + ' | #x.' +

name_relation + ' >= ' + p.lower.toString ()) else (if (

Appendix B -- Implementing The Mapping as an ATL Model Transformation 201

p.lower <> p.upper) then (' all x: ' + name_side + ' |

(#x.' + name_relation + ' >= ' + p.lower.toString () +

') and (#x.' + name_relation + ' <= ' + p.upper.

toString () + ')') else (' all x: ' + name_side + ' | #

x.' + name_relation + ' = ' + p.lower.toString ()) endif

) endif) endif;

65 helper def: cardinality_mediation1(name_relation: String ,

p: OntoUML!Property) : String = if (p.lower = 0) then (

if (p.upper = 0-1) then '' else (' #' + name_relation +

' <= ' + p.upper.toString ()) endif) else (if (p.upper

= 0-1) then (' #' + name_relation + ' >= ' + p.lower.

toString ()) else (if (p.lower <> p.upper) then (' (#' +

name_relation + ' >= ' + p.lower.toString () + ') and

(#' + name_relation + ' <= ' + p.upper.toString () + ')'

) else (' #' + name_relation + ' = ' + p.lower.toString

()) endif) endif) endif;

66 helper def: cardinality_mediation2(name_relation: String ,

name_side: String , p: OntoUML!Property) : String = if (

p.lower = 0) then (if (p.upper = 0-1) then '' else ('

all x: ' + name_side + ' | #((' + name_relation + '.x)

:>domain_of_quantification) <= ' + p.upper.toString ())

endif) else (if (p.upper = 0-1) then (' all x: ' +

name_side + ' | #((' + name_relation + '.x):>

domain_of_quantification) >= ' + p.lower.toString ())

else (if (p.lower <> p.upper) then (' all x: ' +

name_side + ' | (#((' + name_relation + '.x):>

domain_of_quantification) >= ' + p.lower.toString () + '

) and (#((' + name_relation + '.x):>

domain_of_quantification) <= ' + p.upper.toString () + '

)') else (' all x: ' + name_side + ' | #((' +

name_relation + '.x):>domain_of_quantification) = ' + p

.lower.toString ()) endif) endif) endif;

67 helper def: cardinality_derivation1(name_relation: String ,

name_side: String , p: OntoUML!Property) : String = if

(p.lower = 0) then (if (p.upper = 0-1) then '' else ('

Appendix B -- Implementing The Mapping as an ATL Model Transformation 202

all x: ' + name_side + ' | #x.' + name_relation + ' <=

' + p.upper.toString ()) endif) else (if (p.upper = 0-1)

then (' all x: ' + name_side + ' | #x.' +

name_relation + ' >= ' + p.lower.toString ()) else (if (

p.lower <> p.upper) then (' all x: ' + name_side + ' |

(#x.' + name_relation + ' >= ' + p.lower.toString () +

') and (#x.' + name_relation + ' <= ' + p.upper.

toString () + ')') else (' all x: ' + name_side + ' | #

x.' + name_relation + ' = ' + p.lower.toString ()) endif

) endif) endif;

68 helper def: cardinality_derivation2(name_relation: String ,

name_side: String , p: OntoUML!Property) : String = if

(p.lower = 0) then (if (p.upper = 0-1) then '' else ('

all x: ' + name_side + ' | #' + name_relation + '.x <=

' + p.upper.toString ()) endif) else (if (p.upper = 0-1)

then (' all x: ' + name_side + ' | #' + name_relation

+ '.x >= ' + p.lower.toString ()) else (if (p.lower <>

p.upper) then (' all x: ' + name_side + ' | (#' +

name_relation + '.x >= ' + p.lower.toString () + ') and

(#' + name_relation + '.x <= ' + p.upper.toString () + '

)') else (' all x: ' + name_side + ' | #' +

name_relation + '.x = ' + p.lower.toString ()) endif)

endif) endif;

69 helper def: cardinality_characterization1(name_relation:

String , p: OntoUML!Property) : String = if (p.lower =

0) then (if (p.upper = 0-1) then '' else (' #' +

name_relation + ' <= ' + p.upper.toString ()) endif)

else (if (p.upper = 0-1) then (' #' + name_relation + '

>= ' + p.lower.toString ()) else (if (p.lower <> p.

upper) then (' (#' + name_relation + ' >= ' + p.lower.

toString () + ') and (#' + name_relation + ' <= ' + p.

upper.toString () + ')') else (' #' + name_relation + '

= ' + p.lower.toString ()) endif) endif) endif;

70 helper def: cardinality_characterization2(name_relation:

String , name_side: String , p: OntoUML!Property) :

Appendix B -- Implementing The Mapping as an ATL Model Transformation 203

String = if (p.lower = 0) then (if (p.upper = 0-1) then

'' else (' all x: ' + name_side + ' | #((' +

name_relation + '.x):>domain_of_quantification) <= ' +

p.upper.toString ()) endif) else (if (p.upper = 0-1)

then (' all x: ' + name_side + ' | #((' +

name_relation + '.x):>domain_of_quantification) >= ' +

p.lower.toString ()) else (if (p.lower <> p.upper) then

(' all x: ' + name_side + ' | (#((' + name_relation +

'.x):>domain_of_quantification) >= ' + p.lower.toString

() + ') and (#((' + name_relation + '.x):>

domain_of_quantification) <= ' + p.upper.toString () + '

)') else (' all x: ' + name_side + ' | #((' +

name_relation + '.x):>domain_of_quantification) = ' + p

.lower.toString ()) endif) endif) endif;

71

72 entrypoint rule World() {

73 do {

74 thisModule.signature_text <- thisModule.signature_text

+ 'module model\n\n';

75 thisModule.signature_text <- thisModule.signature_text

+ 'open world_structure[World]\n\n';

76 thisModule.command_text <- 'run {}';

77 thisModule.fact_text <- 'fact additional_facts {\n';

78 thisModule.fact_text <- thisModule.fact_text + ' all

w : World , x: (@next.w).domain_of_quantification |

(x not in w.domain_of_quantification) => (x not in

((w. ^next).domain_of_quantification))\n';

79 thisModule.fact_text <- thisModule.fact_text + ' all

x: (' + thisModule.signature_names () + ') | some w:

World | x in w.domain_of_quantification\n}\n';

80 thisModule.text <- thisModule.final_text ();

81 thisModule.text.writeTo(thisModule.path);

82 thisModule.debug('Module ');

83 }

84 }

Appendix B -- Implementing The Mapping as an ATL Model Transformation 204

85

86 rule SubstanceSortal2Signature {

87 from

88 s: OntoUML!SubstanceSortal

89 using {

90 abstract_keyword : String = if ((s.isAbstract = true)

or thisModule.

generalization_Sets_of_subKinds_subTypes_of(s)->

exists(x | x.isCovering = true)) then 'abstract '

else '' endif;

91 }

92 do {

93 thisModule.signature_text <- thisModule.

signature_text + abstract_keyword + 'sig ' + s.

name + ' {}\n';

94 thisModule.text <- thisModule.final_text ();

95 thisModule.text.writeTo(thisModule.path);

96 thisModule.debug('SubstanceSortal ' + s.name);

97 }

98 }

99

100 rule SubKind2Subsignature {

101 from

102 s: OntoUML!SubKind

103 using {

104 abstract_keyword : String = if ((s.isAbstract = true)

or thisModule.

generalization_Sets_of_subKinds_subTypes_of(s)->

exists(x | x.isCovering = true)) then 'abstract '

else '' endif;

105 supertype_keyword : String = if (thisModule.

generalization_Sets_of_superTypes_of(s)->exists(x |

x.isDisjoint = true)) then ' extends ' else (if (

thisModule.superTypes_set(s).size() > 0) then ' in

' else '' endif) endif;

Appendix B -- Implementing The Mapping as an ATL Model Transformation 205

106 }

107 do {

108 thisModule.signature_text <- thisModule.

signature_text + abstract_keyword + 'sig ' + s.

name + supertype_keyword + thisModule.

superTypes_name_list(s) + ' {}\n';

109 thisModule.text <- thisModule.final_text ();

110 thisModule.text.writeTo(thisModule.path);

111 thisModule.debug('SubKind ' + s.name);

112 }

113 }

114

115 rule Mode2Signature {

116 from

117 m: OntoUML!Mode

118 using {

119 abstract_keyword : String = if ((m.isAbstract = true)

or thisModule.

generalization_Sets_of_subKinds_subTypes_of(m)->

exists(x | x.isCovering = true)) then 'abstract '

else '' endif;

120 supertype_keyword : String = if (thisModule.

generalization_Sets_of_superTypes_of(m)->exists(x |

x.isDisjoint = true)) then ' extends ' else (if (

thisModule.superTypes_set(m).size() > 0) then ' in

' else '' endif) endif;

121 characterizations : OrderedSet(OntoUML!

Characterization) = OntoUML!Characterization.

allInstances ()->select(x | x.source ->exists(y | if

y.oclIsKindOf(OntoUML!Property) then (thisModule.

derive_endType(y) = m) else false endif));

122 characterizations_str : String = characterizations ->

iterate(x; str : String = '' | str + ' ' + x.name

+ ': '+ thisModule.cardinality(x.target ->any(y |

true)) + ' ' + thisModule.allSuperTypes(thisModule.

Appendix B -- Implementing The Mapping as an ATL Model Transformation 206

derive_endType(x.target ->any(y | true)))->including

(thisModule.derive_endType(x.target ->any(y | true))

)->select(x | x.oclIsKindOf(OntoUML!SubstanceSortal

))->any(x | true).name + ',\n');

123 characterizations_cardinalities : String =

characterizations ->iterate(x; str : String = '' |

str + thisModule.cardinality_characterization1(x.

name ,x.target ->any(y | true)) + '\n');

124 signature_constraints : String = let str: String =

characterizations_cardinalities in (if (str <> '')

then ('{\n' + str + '}') else '' endif);

125 world_facts : String = let world_fact_str: String =

' all x: ' + m.name + ':>domain_of_quantification

| ' + characterizations ->iterate(x; str : String

= '' | str + '(x.' + x.name + ' in ' +

thisModule.derive_endType(x.target ->any(y | true)

).name + ') and ') in (if (world_fact_str.size()

> 0) then world_fact_str.substring (1,(

world_fact_str.size() -5)) + '\n' else '' endif);

126 }

127 do {

128 world_facts <- world_facts + characterizations ->

iterate(x; str : String = '' | str + thisModule.

cardinality_characterization2(x.name ,thisModule.

name_side_target(x),x.source ->any(y | true)) + '\n'

);

129 thisModule.signature_text <- thisModule.

signature_text + abstract_keyword + 'sig ' + m.

name + supertype_keyword + thisModule.

superTypes_name_list(m) + ' {\n' +

characterizations_str + '}' +

signature_constraints + '\n';

130 thisModule.signature_facts_world <- thisModule.

signature_facts_world + world_facts;

131 thisModule.text <- thisModule.final_text ();

Appendix B -- Implementing The Mapping as an ATL Model Transformation 207

132 thisModule.text.writeTo(thisModule.path);

133 thisModule.debug('Mode ' + m.name);

134 }

135 }

136

137 rule Relator2Signature {

138 from

139 r: OntoUML!Relator

140 using {

141 abstract_keyword : String = if ((r.isAbstract = true)

or thisModule.

generalization_Sets_of_subKinds_subTypes_of(r)->

exists(x | x.isCovering = true)) then 'abstract '

else '' endif;

142 supertype_keyword : String = if (thisModule.

generalization_Sets_of_superTypes_of(r)->exists(x |

x.isDisjoint = true)) then ' extends ' else (if (

thisModule.superTypes_set(r).size() > 0) then ' in

' else '' endif) endif;

143 mediations : OrderedSet(OntoUML!Mediation) = OntoUML!

Mediation.allInstances ()->select(x | x.source ->

exists(y | if y.oclIsKindOf(OntoUML!Property) then

(thisModule.derive_endType(y) = r) else false endif

));

144 derivations : OrderedSet(OntoUML!Derivation) = OntoUML

!Derivation.allInstances ()->select(x | x.target ->

exists(y | if y.oclIsKindOf(OntoUML!Property) then

(thisModule.derive_endType(y) = r) else false endif

));

145 mediations_str : String = mediations ->iterate(x; str :

String = '' | str + ' ' + x.name + ': '+

thisModule.cardinality(x.target ->any(y | true)) + '

' + thisModule.allSuperTypes(thisModule.

derive_endType(x.target ->any(y | true)))->including

(thisModule.derive_endType(x.target ->any(y | true))

Appendix B -- Implementing The Mapping as an ATL Model Transformation 208

)->select(x | x.oclIsKindOf(OntoUML!SubstanceSortal

))->any(x | true).name + ',\n');

146 derivations_str : String = derivations ->iterate(x; str

: String = '' | let mediated_class1: OntoUML!

ObjectClass = thisModule.derive_endType(thisModule.

derive_endType(x.source ->any(y | true)).

associationEnd ->at(1)) in let mediated_class2:

OntoUML!ObjectClass = thisModule.derive_endType(

thisModule.derive_endType(x.source ->any(y | true)).

associationEnd ->at(2)) in let mediation1: OntoUML!

Mediation = mediations ->select(y | y.target ->exists

(z | if z.oclIsKindOf(OntoUML!Property) then (

thisModule.derive_endType(z) = mediated_class1)

else false endif))->at(1) in let mediation2:

OntoUML!Mediation = mediations ->select(y | y.target

->exists(z | if z.oclIsKindOf(OntoUML!Property)

then (thisModule.derive_endType(z) =

mediated_class2) else false endif))->at(1) in (str

+ ' ' + x.name + ': '+ mediation1.name + ' ' +

thisModule.cardinality(mediation1.target ->any(y |

true)) + ' -> ' + thisModule.cardinality(mediation2

.target ->any(y | true)) + ' ' + mediation2.name + '

,\n'));

147 mediations_generalization : String = thisModule.

generalization_relational_constraint(mediations);

148 derivations_generalization : String = thisModule.

generalization_relational_constraint(derivations);

149 mediations_cardinalities : String = mediations ->

iterate(x; str : String = '' | str + thisModule.

cardinality_mediation1(x.name ,x.target ->any(y |

true)) + '\n');

150 derivations_cardinalities : String = derivations ->

iterate(x; str : String = '' | let mediated_class1:

OntoUML!ObjectClass = thisModule.derive_endType(

thisModule.derive_endType(x.source ->any(y | true)).

Appendix B -- Implementing The Mapping as an ATL Model Transformation 209

associationEnd ->at(1)) in let mediated_class2:

OntoUML!ObjectClass = thisModule.derive_endType(

thisModule.derive_endType(x.source ->any(y | true)).

associationEnd ->at(2)) in let mediation1: OntoUML!

Mediation = mediations ->select(y | y.target ->exists

(z | if z.oclIsKindOf(OntoUML!Property) then (

thisModule.derive_endType(z) = mediated_class1)

else false endif))->at(1) in let mediation2:

OntoUML!Mediation = mediations ->select(y | y.target

->exists(z | if z.oclIsKindOf(OntoUML!Property)

then (thisModule.derive_endType(z) =

mediated_class2) else false endif))->at(1) in (str

+ thisModule.cardinality_derivation1(x.name ,

mediation1.name ,mediation2.target ->any(y | true)) +

'\n' + thisModule.cardinality_derivation2(x.name ,

mediation2.name ,mediation1.target ->any(y | true)) +

'\n'));

151 signature_constraints : String = let str: String =

mediations_generalization +

derivations_generalization +

mediations_cardinalities +

derivations_cardinalities in (if (str <> '') then (

'{\n' + str + '}') else '' endif);

152 world_facts : String = let world_fact_str: String = '

all x: ' + r.name + ':>domain_of_quantification | '

+ mediations ->iterate(x; str : String = '' | str +

'(x.' + x.name + ' in ' + thisModule.

derive_endType(x.target ->any(y | true)).name + ')

and ') in (if (world_fact_str.size() > 0) then

world_fact_str.substring (1,(world_fact_str.size()

-5)) + '\n' else '' endif);

153 }

154 do {

155 world_facts <- world_facts + mediations ->iterate(x;

str : String = '' | str + thisModule.

Appendix B -- Implementing The Mapping as an ATL Model Transformation 210

cardinality_mediation2(x.name ,thisModule.

name_side_target(x),x.source ->any(y | true)) + '\n'

);

156 world_facts <- world_facts + derivations ->iterate(x;

str : String = '' | str + ' ' + thisModule.

derive_endType(x.source ->any(y | true)).name + ' =

(' + r.name + ':>domain_of_quantification).' + x.

name + '\n');

157 thisModule.signature_text <- thisModule.

signature_text + abstract_keyword + 'sig ' + r.

name + supertype_keyword + thisModule.

superTypes_name_list(r) + ' {\n' + mediations_str

+ derivations_str + '}' + signature_constraints

+ '\n';

158 thisModule.signature_facts_world <- thisModule.

signature_facts_world + world_facts;

159 thisModule.text <- thisModule.final_text ();

160 thisModule.text.writeTo(thisModule.path);

161 thisModule.debug('Relator ' + r.name);

162 }

163 }

164

165 rule SimpleDatatype2Signature {

166 from

167 s: OntoUML!SimpleDatatype

168 using {

169 abstract_keyword : String = if ((s.isAbstract = true)

or thisModule.

generalization_Sets_of_subKinds_subTypes_of(s)->

exists(x | x.isCovering = true)) then 'abstract '

else '' endif;

170 supertype_keyword : String = if (thisModule.

generalization_Sets_of_superTypes_of(s)->exists(x |

x.isDisjoint = true)) then ' extends ' else (if (

thisModule.superTypes_set(s).size() > 0) then ' in

Appendix B -- Implementing The Mapping as an ATL Model Transformation 211

' else '' endif) endif;

171 }

172 do {

173 thisModule.signature_text <- thisModule.

signature_text + abstract_keyword + 'sig ' + s.

name + supertype_keyword + thisModule.

superTypes_name_list(s) + ' {}\n';

174 thisModule.text <- thisModule.final_text ();

175 thisModule.text.writeTo(thisModule.path);

176 thisModule.debug('SimpleDatatype ' + s.name);

177 }

178 }

179

180 rule StructuralDatatype2Signature {

181 from

182 s: OntoUML!StructuralDatatype

183 using {

184 abstract_keyword : String = if ((s.isAbstract = true)

or thisModule.

generalization_Sets_of_subKinds_subTypes_of(s)->

exists(x | x.isCovering = true)) then 'abstract '

else '' endif;

185 supertype_keyword : String = if (thisModule.

generalization_Sets_of_superTypes_of(s)->exists(x |

x.isDisjoint = true)) then ' extends ' else (if (

thisModule.superTypes_set(s).size() > 0) then ' in

' else '' endif) endif;

186 datatype_relationships : OrderedSet(OntoUML!

DatatypeRelationship) = OntoUML!

DatatypeRelationship.allInstances ()->select(x | x.

source ->exists(y | if y.oclIsKindOf(OntoUML!

Property) then (thisModule.derive_endType(y) = s)

else false endif));

187 datatype_relationships_str : String =

datatype_relationships ->iterate(x; str : String = '

Appendix B -- Implementing The Mapping as an ATL Model Transformation 212

' | str + ' ' + x.name + ': '+ thisModule.

cardinality(x.target ->any(y | true)) + ' ' +

thisModule.derive_endType(x.target ->any(y | true)).

name + ',\n');

188 datatype_relationships_cardinalities : String =

datatype_relationships ->iterate(x; str : String = '

' | str + thisModule.cardinality_mediation1(x.name ,

x.target ->any(y | true)) + '\n');

189 datatype_relationships_generalization : String =

thisModule.generalization_relational_constraint(

datatype_relationships);

190 canonicity_fact : String = ' all x,y: ' + s.name + '

| ' + (let canonicity_fact_str : String =

datatype_relationships ->iterate(x; str : String = '

(' | str + '(x.@' + x.name + ' = ' + 'y.@' + x.name

+ ') and ') in canonicity_fact_str.substring (1,(

canonicity_fact_str.size() -5))) + ') implies (x = y

)\n';

191 signature_constraints : String = let str: String =

datatype_relationships_generalization +

datatype_relationships_cardinalities +

canonicity_fact in (if (str <> '') then ('{\n' +

str + '}') else '' endif);

192 }

193 do {

194 thisModule.signature_text <- thisModule.

signature_text + abstract_keyword + 'sig ' + s.

name + supertype_keyword + thisModule.

superTypes_name_list(s) + ' {\n' +

datatype_relationships_str + '}' +

signature_constraints + '\n';

195 thisModule.text <- thisModule.final_text ();

196 thisModule.text.writeTo(thisModule.path);

197 thisModule.debug('StructuredDatatype ' + s.name);

198 }

Appendix B -- Implementing The Mapping as an ATL Model Transformation 213

199 }

200

201 rule Category2Function {

202 from

203 s: OntoUML!Category

204 do {

205 if(thisModule.subTypes_set(s)->forAll(x | x.

oclIsKindOf(OntoUML!Category)))

206 thisModule.function_text <- thisModule.

function_text + 'fun ' + s.name + ': univ {' +

thisModule.subTypes_name_union_set(s) + '}\n';

207 else

208 thisModule.function_text <- thisModule.

function_text + 'fun ' + s.name + ': (' +

thisModule.subTypes_name_union_set(s) + ')' +

' {\n ' + thisModule.

subTypes_name_union_set(s) + '\n}\n';

209 thisModule.text <- thisModule.final_text ();

210 thisModule.text.writeTo(thisModule.path);

211 thisModule.debug('Category ' + s.name);

212 }

213 }

214

215 rule Phase2Relation {

216 from

217 p: OntoUML!Phase

218 do {

219 if (OntoUML!GeneralizationSet.allInstances ()->select(x

| if (x.generalization.size() > 0) then (if (x.

generalization ->exists(y | thisModule.

derive_specific(y) = p)) then true else false endif

) else false endif)->isEmpty ()) {

220 thisModule.relation_phases <- thisModule.

relation_phases + ' ' + p.name + ': set ' +

thisModule.superTypes_name_union_set(p) + ':>

Appendix B -- Implementing The Mapping as an ATL Model Transformation 214

domain_of_quantification ,\n';

221 }

222 thisModule.signature_facts_world <- thisModule.

signature_facts_world + ' all x: ' + thisModule.

allSuperTypes(p)->select(x | x.oclIsKindOf(OntoUML!

SubstanceSortal))->any(x | true).name + ' | some w:

World | x in w.@' + p.name + '\n';

223 thisModule.text <- thisModule.final_text ();

224 thisModule.text.writeTo(thisModule.path);

225 thisModule.debug('Phase ' + p.name);

226 }

227 }

228

229 rule Role2Relation {

230 from

231 p: OntoUML!Role

232 do {

233 if (thisModule.superTypes_set(p)->forAll(x | not x.

oclIsKindOf(OntoUML!AntiRigidSortalClass))) {

234 thisModule.signature_facts_world <- thisModule.

signature_facts_world + ' all x: ' + p.name + '

| some w: World | (x in w.

@domain_of_quantification) and (x not in w.@' + p

.name + ')\n';

235 }

236 else {

237 thisModule.signature_facts_world <- thisModule.

signature_facts_world + '-- all x: ' + p.name

+ ' | some w: World | (x in w.

@domain_of_quantification) and (x not in w.@' +

p.name + ')\n';

238 }

239 thisModule.text <- thisModule.final_text ();

240 thisModule.text.writeTo(thisModule.path);

241 thisModule.debug('Role ' + p.name);

Appendix B -- Implementing The Mapping as an ATL Model Transformation 215

242 }

243 }

244

245 rule Mixin2Relation {

246 from

247 m: OntoUML!Mixin

248 do {

249 thisModule.signature_facts_world <- thisModule.

signature_facts_world + ' all x: (' + thisModule.

subTypes_name_union_set_special_rigid_sortal_subtypes

(m) + ') | x in ' + m.name + '\n';

250 thisModule.text <- thisModule.final_text ();

251 thisModule.text.writeTo(thisModule.path);

252 thisModule.debug('Mixin ' + m.name);

253 }

254 }

255

256 rule RoleMixin2Relation {

257 from

258 r: OntoUML!RoleMixin

259 do {

260 thisModule.signature_facts_world <- thisModule.

signature_facts_world + ' all x: (' + thisModule.

subTypes_name_union_set(r) + ') | x in ' + r.name +

'\n';

261 thisModule.text <- thisModule.final_text ();

262 thisModule.text.writeTo(thisModule.path);

263 thisModule.debug('RoleMixin ' + r.name);

264 }

265 }

266

267 rule Meronymic2Relation {

268 from

269 m: OntoUML!Meronymic

270 using {

Appendix B -- Implementing The Mapping as an ATL Model Transformation 216

271 source_min_cardinality : Integer = m.source ->any

(x | true).lower;

272 source_max_cardinality : Integer = m.source ->any

(x | true).upper;

273 target_min_cardinality : Integer = m.target ->any

(x | true).lower;

274 target_max_cardinality : Integer = m.target ->any

(x | true).upper;

275 cardinality_source : String = '';

276 cardinality_target : String = '';

277 cardinality_fact_source : String = thisModule.

cardinality_fact1(m.name ,thisModule.

name_side_source(m),m.target ->any(x | true));

278 cardinality_fact_target : String = thisModule.

cardinality_fact2(m.name ,thisModule.

name_side_target(m),m.source ->any(x | true));

279 tlrss : OrderedSet (OntoUML!Classifier) = thisModule

.top_level_rigid_sortals_connected_on_source(m);

280 tlrst : OrderedSet (OntoUML!Classifier) = thisModule

.top_level_rigid_sortals_connected_on_target(m);

281 world_facts : String = '';

282 }

283 do {

284 if ((source_min_cardinality = 0) and (

source_max_cardinality = 1)) {

285 cardinality_source <- 'lone';

286 }

287 else {

288 if ((source_min_cardinality = 1) and (

source_max_cardinality = 1)) {

289 cardinality_source <- 'one';

290 }

291 else {

292 if ((source_min_cardinality = 1) and (

source_max_cardinality = 0-1)) {

Appendix B -- Implementing The Mapping as an ATL Model Transformation 217

293 cardinality_source <- 'some';

294 }

295 else {

296 cardinality_source <- 'set';

297 }

298 }

299 }

300 if ((target_min_cardinality = 0) and (

target_max_cardinality = 1)) {

301 cardinality_target <- 'lone';

302 }

303 else {

304 if ((target_min_cardinality = 1) and (

target_max_cardinality = 1)) {

305 cardinality_target <- 'one';

306 }

307 else {

308 if ((target_min_cardinality = 1) and (

target_max_cardinality = 0-1)) {

309 cardinality_target <- 'some';

310 }

311 else {

312 cardinality_target <- 'set';

313 }

314 }

315 }

316 thisModule.relation_relations <- thisModule.

relation_relations + ' ' + m.name + ': set ' +

thisModule.derive_endType(m.target ->any(x | true)

).name + (if (thisModule.derive_endType(m.target

->any(x | true)).oclIsKindOf(OntoUML!

SubstanceSortal)) then ':>

domain_of_quantification ' else '' endif) + ' ' +

cardinality_target + ' -> ' + cardinality_source

+ ' ' + thisModule.derive_endType(m.source ->any(x

Appendix B -- Implementing The Mapping as an ATL Model Transformation 218

| true)).name + (if (thisModule.derive_endType(m

.source ->any(x | true)).oclIsKindOf(OntoUML!

SubstanceSortal)) then ':>

domain_of_quantification ' else '' endif) + ',\n';

317 if ((m.isImmutablePart = true) or (m.isEssential =

true) or (m.target ->any(x | true).isReadOnly =

true)) {

318 world_facts <- world_facts + if ((tlrss.size() >

0) and (tlrst.size() > 0)) then (' all x: ' +

tlrss ->any(x | true).name + ', w0, w1: (@' + m.

name + '.x).' + tlrst ->any(x | true).name + ' |

(w0.@' + m.name + ').x = (w1.@' + m.name + ').

x -- essential or immutablePart or readOnly

target .\n') else '' endif;

319 }

320 if ((m.isImmutableWhole = true) or (m.isInseparable

= true) or (m.source ->any(x | true).isReadOnly =

true)) {

321 world_facts <- world_facts + if ((tlrss.size() >

0) and (tlrst.size() > 0)) then (' all x: ' +

tlrst ->any(x | true).name + ', w0, w1: (@' + m.

name + '.' + tlrss ->any(x | true).name + ').x |

x.(w0.@' + m.name + ') = x.(w1.@' + m.name + '

) -- inseparable or immutableWhole or readOnly

source .\n') else '' endif;

322 }

323 world_facts <- world_facts + (if (

cardinality_fact_source <> '') then (

cardinality_fact_source + '\n') else '' endif) + (

if (cardinality_fact_target <> '') then (

cardinality_fact_target + '\n') else '' endif);

324 thisModule.signature_facts_world <- thisModule.

signature_facts_world + world_facts;

325 thisModule.text <- thisModule.final_text ();

326 thisModule.text.writeTo(thisModule.path);

Appendix B -- Implementing The Mapping as an ATL Model Transformation 219

327 thisModule.debug('Meronymic ' + m.name);

328 }

329 }

330

331 rule DatatypeRelationship2Relation {

332 from

333 d: OntoUML!DatatypeRelationship (

334 not d.source ->exists(x | if x.oclIsKindOf(

OntoUML!Property) then (thisModule.

derive_endType(x).oclIsKindOf(OntoUML!

StructuralDatatype)) else false endif)

335)

336 using {

337 source_min_cardinality : Integer = d.source ->any

(x | true).lower;

338 source_max_cardinality : Integer = d.source ->any

(x | true).upper;

339 target_min_cardinality : Integer = d.target ->any

(x | true).lower;

340 target_max_cardinality : Integer = d.target ->any

(x | true).upper;

341 name : String = d.target ->any(x | true).name;

342 cardinality_source : String = '';

343 cardinality_target : String = '';

344 cardinality_fact_source : String = thisModule.

cardinality_fact1(name ,thisModule.

name_side_source(d),d.target ->any(x | true));

345 cardinality_fact_target : String = thisModule.

cardinality_fact2(name ,thisModule.

name_side_target(d),d.source ->any(x | true));

346 tlrss : OrderedSet (OntoUML!Classifier) = thisModule

.top_level_rigid_sortals_connected_on_source(d);

347 tlrst : OrderedSet (OntoUML!Classifier) = thisModule

.top_level_rigid_sortals_connected_on_target(d);

348 world_facts : String = '';

Appendix B -- Implementing The Mapping as an ATL Model Transformation 220

349 }

350 do {

351 if ((source_min_cardinality = 0) and (

source_max_cardinality = 1)) {

352 cardinality_source <- 'lone';

353 }

354 else {

355 if ((source_min_cardinality = 1) and (

source_max_cardinality = 1)) {

356 cardinality_source <- 'one';

357 }

358 else {

359 if ((source_min_cardinality = 1) and (

source_max_cardinality = 0-1)) {

360 cardinality_source <- 'some';

361 }

362 else {

363 cardinality_source <- 'set';

364 }

365 }

366 }

367 if ((target_min_cardinality = 0) and (

target_max_cardinality = 1)) {

368 cardinality_target <- 'lone';

369 }

370 else {

371 if ((target_min_cardinality = 1) and (

target_max_cardinality = 1)) {

372 cardinality_target <- 'one';

373 }

374 else {

375 if ((target_min_cardinality = 1) and (

target_max_cardinality = 0-1)) {

376 cardinality_target <- 'some';

377 }

Appendix B -- Implementing The Mapping as an ATL Model Transformation 221

378 else {

379 cardinality_target <- 'set';

380 }

381 }

382 }

383 thisModule.relation_relations <- thisModule.

relation_relations + ' ' + name + ': set ' +

thisModule.derive_endType(d.target ->any(x | true)

).name + (if (thisModule.derive_endType(d.target

->any(x | true)).oclIsKindOf(OntoUML!

SubstanceSortal)) then ':>

domain_of_quantification ' else '' endif) + ' ' +

cardinality_target + ' -> ' + cardinality_source

+ ' ' + thisModule.derive_endType(d.source ->any(x

| true)).name + (if (thisModule.derive_endType(d

.source ->any(x | true)).oclIsKindOf(OntoUML!

SubstanceSortal)) then ':>

domain_of_quantification ' else '' endif) + ',\n';

384 if (d.target ->any(x | true).isReadOnly = true) {

385 world_facts <- world_facts + if ((tlrss.size() >

0) and (tlrst.size() > 0)) then (' all x: ' +

tlrss ->any(x | true).name + ', w0, w1: (@' +

name + '.x).' + tlrst ->any(x | true).name + ' |

(w0.@' + name + ').x = (w1.@' + name + ').x

-- readOnly target .\n') else '' endif;

386 }

387 if (d.source ->any(x | true).isReadOnly = true) {

388 world_facts <- world_facts + if ((tlrss.size() >

0) and (tlrst.size() > 0)) then (' all x: ' +

tlrst ->any(x | true).name + ', w0, w1: (@' +

name + '.' + tlrss ->any(x | true).name + ').x |

x.(w0.@' + name + ') = x.(w1.@' + name + ') --

readOnly source .\n') else '' endif;

389 }

390 world_facts <- world_facts + (if (

Appendix B -- Implementing The Mapping as an ATL Model Transformation 222

cardinality_fact_source <> '') then (

cardinality_fact_source + '\n') else '' endif) + (

if (cardinality_fact_target <> '') then (

cardinality_fact_target + '\n') else '' endif);

391 thisModule.signature_facts_world <- thisModule.

signature_facts_world + world_facts;

392 thisModule.text <- thisModule.final_text ();

393 thisModule.text.writeTo(thisModule.path);

394 thisModule.debug('DatatypeRelationship ' + name);

395 }

396 }

397

398 rule Association2Relation {

399 from

400 m: OntoUML!Association

401 using {

402 associationEnd1_min_cardinality : Integer = m.

associationEnd ->at(1).lower;

403 associationEnd1_max_cardinality : Integer = m.

associationEnd ->at(1).upper;

404 associationEnd2_min_cardinality : Integer = m.

associationEnd ->at(2).lower;

405 associationEnd2_max_cardinality : Integer = m.

associationEnd ->at(2).upper;

406 cardinality_associationEnd1 : String = '';

407 cardinality_associationEnd2 : String = '';

408 cardinality_fact_associationEnd1 : String =

thisModule.cardinality_fact2(m.name ,thisModule.

name_side_associationEnd(m,1),m.associationEnd ->

at(2));

409 cardinality_fact_associationEnd2 : String =

thisModule.cardinality_fact1(m.name ,thisModule.

name_side_associationEnd(m,2),m.associationEnd ->

at(1));

410 tlrsa1 : OrderedSet (OntoUML!Classifier) =

Appendix B -- Implementing The Mapping as an ATL Model Transformation 223

thisModule.

top_level_rigid_sortals_connected_on_associationEnd

(m,1);

411 tlrsa2 : OrderedSet (OntoUML!Classifier) =

thisModule.

top_level_rigid_sortals_connected_on_associationEnd

(m,2);

412 world_facts : String = '';

413 }

414 do {

415 if ((associationEnd1_min_cardinality = 0) and (

associationEnd1_max_cardinality = 1)) {

416 cardinality_associationEnd1 <- 'lone';

417 }

418 else {

419 if ((associationEnd1_min_cardinality = 1) and (

associationEnd1_max_cardinality = 1)) {

420 cardinality_associationEnd1 <- 'one';

421 }

422 else {

423 if ((associationEnd1_min_cardinality = 1) and

(associationEnd1_max_cardinality = 0-1)) {

424 cardinality_associationEnd1 <- 'some';

425 }

426 else {

427 cardinality_associationEnd1 <- 'set';

428 }

429 }

430 }

431 if ((associationEnd2_min_cardinality = 0) and (

associationEnd2_max_cardinality = 1)) {

432 cardinality_associationEnd2 <- 'lone';

433 }

434 else {

435 if ((associationEnd2_min_cardinality = 1) and (

Appendix B -- Implementing The Mapping as an ATL Model Transformation 224

associationEnd2_max_cardinality = 1)) {

436 cardinality_associationEnd2 <- 'one';

437 }

438 else {

439 if ((associationEnd2_min_cardinality = 1) and

(associationEnd2_max_cardinality = 0-1)) {

440 cardinality_associationEnd2 <- 'some';

441 }

442 else {

443 cardinality_associationEnd2 <- 'set';

444 }

445 }

446 }

447 if (m.associationEnd ->at(2).isReadOnly = true) {

448 world_facts <- world_facts + if ((tlrsa1.size() >

0) and (tlrsa2.size() > 0)) then (' all x: ' +

tlrsa1 ->any(x | true).name + ', w0, w1: (@' + m

.name + '.x).' + tlrsa2 ->any(x | true).name + '

| (w0.@' + m.name + ').x = (w1.@' + m.name + '

).x -- readOnly target .\n') else '' endif;

449 }

450 if (m.associationEnd ->at(1).isReadOnly = true) {

451 world_facts <- world_facts + if ((tlrsa1.size() >

0) and (tlrsa2.size() > 0)) then (' all x: ' +

tlrsa2 ->any(x | true).name + ', w0, w1: (@' + m

.name + '.' + tlrsa1 ->any(x | true).name + ').x

| x.(w0.@' + m.name + ') = x.(w1.@' + m.name +

') -- readOnly source .\n') else '' endif;

452 }

453 thisModule.relation_relations <- thisModule.

relation_relations + ' ' + m.name + ': set ' +

thisModule.derive_endType(m.associationEnd ->at(1)

).name + (if (thisModule.derive_endType(m.

associationEnd ->at(1)).oclIsKindOf(OntoUML!

SubstanceSortal)) then ':>

Appendix B -- Implementing The Mapping as an ATL Model Transformation 225

domain_of_quantification ' else '' endif) + ' ' +

cardinality_associationEnd2 + ' -> ' +

cardinality_associationEnd1 + ' ' + thisModule.

derive_endType(m.associationEnd ->at(2)).name + (

if (thisModule.derive_endType(m.associationEnd ->

at(2)).oclIsKindOf(OntoUML!SubstanceSortal)) then

':>domain_of_quantification ' else '' endif) + '

,\n';

454 world_facts <- world_facts + (if (

cardinality_fact_associationEnd1 <> '') then (

cardinality_fact_associationEnd1 + '\n') else ''

endif) + (if (cardinality_fact_associationEnd2 <> '

') then (cardinality_fact_associationEnd2 + '\n')

else '' endif);

455 thisModule.signature_facts_world <- thisModule.

signature_facts_world + world_facts;

456 thisModule.text <- thisModule.final_text ();

457 thisModule.text.writeTo(thisModule.path);

458 thisModule.debug('Association ' + m.name);

459 }

460 }

461

462 rule GeneralizationSet2Fact {

463 from

464 g : OntoUML!GeneralizationSet (

465 (g.isDisjoint or g.isCovering) -- Otherwise , this

fact would have no body.

466 and not g.generalization ->collect(x | thisModule.

derive_specific(x))->forAll(x | x.oclIsKindOf(

OntoUML!SubKind))

467)

468 using {

469 general : OntoUML!Element = g.generalization ->

collect(x | thisModule.derive_general(x))->any(x

| true);

Appendix B -- Implementing The Mapping as an ATL Model Transformation 226

470 specifics : OrderedSet(OntoUML!Element) = g.

generalization ->collect(x | thisModule.

derive_specific(x));

471 facts : String = '';

472 }

473 do {

474 if (specifics ->forAll(x | x.oclIsKindOf(OntoUML!

Relationship))) { -- If the generalizations are

between associations.

475 if ((g.isDisjoint = true) and (specifics ->size

() >= 2)) {

476 facts <- ' disj[' + thisModule.names_list

(specifics) + ']\n';

477 if (g.isCovering = true)

478 facts <- facts + ' ' + general.name + '

= ' + thisModule.names_union_set(

specifics) + '\n';

479 }

480 else {

481 if (g.isCovering = true)

482 facts <- facts + ' ' + general.name + ' = ' +

thisModule.names_union_set(specifics) + '\n';

483 }

484 }

485 else { -- If the generalizations are between classes

.

486 if ((g.isDisjoint = true) and (specifics ->size

() >= 2)) {

487 facts <- ' disj[' + thisModule.names_list

(specifics) + ']\n';

488 if (g.isCovering = true)

489 if (general.oclIsKindOf(OntoUML!

SubstanceSortal) or general.

oclIsKindOf(OntoUML!Relator))

490 facts <- facts + ' ' + general.name +

Appendix B -- Implementing The Mapping as an ATL Model Transformation 227

':> domain_of_quantification = ' +

thisModule.names_union_set(

specifics) + '\n';

491 else

492 facts <- facts + ' ' + general.

name + ' = ' + thisModule.

names_union_set(specifics) + '\

n';

493 }

494 else {

495 if (g.isCovering = true)

496 if (general.oclIsKindOf(OntoUML!

SubstanceSortal) or general.

oclIsKindOf(OntoUML!Relator))

497 facts <- ' ' + general.name + ':>

domain_of_quantification = ' +

thisModule.names_union_set(

specifics) + '\n';

498 else

499 facts <- ' ' + general.name + ' =

' + thisModule.names_union_set

(specifics) + '\n';

500 }

501 }

502 thisModule.signature_facts_world <- thisModule.

signature_facts_world + facts;

503 thisModule.text <- thisModule.final_text ();

504 thisModule.text.writeTo(thisModule.path);

505 thisModule.debug('GeneralizationSet ' + g.name);

506 }

507 }

228

APPENDIX C -- OntoUML Editor Manual

This appendix explains how to install and execute the OntoUML Editor. Notice that a working

Java Runtime Environment (JRE) is a pre-requisite.

In order to install the OntoUML Editor and create an OntoUML model, you must follow the

steps show in 86, which, at the writing of this thesis, are the steps shown in the next sections.

C.1 Installing the OntoUML Editor

There are two ways of using the OntoUML Editor: (i) as a standalone product, or (ii) as an Eclipse

plug-in. Subsection C.1.1 explains how to obtain the standalone binaries, while subsection C.1.2

deals with the installation of the OntoUML Editor as an Eclipse plug-in.

C.1.1 Installing the Standalone OntoUML Editor

In the Downloads tab of the OntoUML Editor’s site1, there are binaries for different combinations

of Operational Systems (OSs) (viz.: Advanced Interactive eXecutive2 (AIX), Hewlett Packard

UniX3 (HP-UX), Linux, Mac OS X, Solaris and Windows), processor types (viz.: IA64-

32, Performance Optimization With Enhanced RISC - Performance Computing (PowerPC),

Scalable Processor Architecture4 (SPARC), x86 and x86-64) and widget toolkits (viz.: Carbon,

GIMP Toolkit5 (GTK), Motif, Win32 Application Programming Interface (API) and Windows

Presentation Foundation6 (WPF)). You have to choose a suitable combination. The options are:

• OS: AIX
1http://code.google.com/p/ontouml/downloads/list.
2http://www-03.ibm.com/systems/power/software/aix.
3http://www.hp.com/go/hpux.
4http://www.sparc.org.
5http://www.gtk.org.
6http://windowsclient.net/wpf.

C.1 Installing the OntoUML Editor 229

– Processor type: PowerPC

∗ Widget toolkit: Motif

• OS: HP-UX

– Processor type: IA64-32

∗ Widget toolkit: Motif

• OS: Linux

– Processor type: PowerPC

∗ Widget toolkit: GTK

– Processor type: x86

∗ Widget toolkit: GTK

– Processor type: x86-64

∗ Widget toolkit: GTK

• OS: Mac OS X

– Processor type: PowerPC

∗ Widget toolkit: Carbon

– Processor type: x86

∗ Widget toolkit: Carbon

• OS: Solaris

– Processor type: SPARC

∗ Widget toolkit: GTK

• OS: Windows NT and Windows 95 up to Windows 7 (The versions of Windows that use

the Win32 API)

– Processor type: x86

∗ Widget toolkit: Win32 API

∗ Widget toolkit: WPF

– Processor type: x86-64

∗ Widget toolkit: Win32 API

C.1 Installing the OntoUML Editor 230

If you have no idea of what are those options, just download OntoUMLEditor1.2.0.win32.

win32.x86.zip (you are probably using a 32 bit Windows).

After downloading, unzip the file, enter in the folder “eclipse” and run OntoUMLEditor[.exe].

C.1.2 Installing the OntoUML Editor Eclipse Plug-in

In order to install the OntoUML Editor Eclipse plug-in, you must follow the following steps:

1. Download the Eclipse Modeling Tools package for your OS at http://www.eclipse.org/

downloads and unzip it (in case you do not have a working Eclipse);

2. If you have manually installed a previous version of OntoUML Editor in the “dropins”

Eclipse folder, just delete the OntoUML Editor files from “dropins”;

3. Installing:

• Installing from the repository (Recommended):

– In Eclipse 3.5.x or 3.6.x (attention, the OntoUML Editor still does not work

with these versions of Eclipse!), go to Help → Install New Software. . . →
Add. . ., then put “OntoUML Editor” (without quotes) in the “Name” field

and “http://ontouml.googlecode.com/svn/trunk/OntoUMLUpdateSite” (without

quotes) in the “Location” field and then click OK. Now, deselect the button

"Group items by catgory", select “OntoUML Editor” and click on Next→ Next

→ Read and accept the terms of the license → Finish. If Eclipse complains

about unsigned content, just click OK.

– In Eclipse 3.4.27, go to Help → Software Updates → Available Software

→ Add Site and add the address http://ontouml.googlecode.com/svn/trunk/

OntoUMLUpdateSite and click on OK. After, click on “Manage Sites”, select

this Uniform Resource Locator (URL) or “OntoUML Editor Update Site” (if it

was not selected by default) and click on OK. Click on Refresh. Now, open the

repository “OntoUML Editor Update Site”, select OntoUML Editor and click

on Install.

• Installing manually (warning: if you install manually, you will not be notified of

updates): Download the latest zip file from the Downloads tab and unzip it in the

“dropins” folder of your Eclipse.
7One can get this version at http://www.eclipse.org/downloads/packages/

eclipse-modeling-tools-includes-incubating-components/ganymedesr2.

C.2 Creating an OntoUML Model 231

4. Restart Eclipse when the installation finishes;

5. It is recommended to periodically make a search for updates (only works if installed

from the repository): Go to Help→ Software Updates→ Installed Software and click

on Update. You should make a backup of your models before opening them with a new

version of the editor.

C.2 Creating an OntoUML Model

The creation of an OntoUML model in the standalone OntoUML Editor is different from the

creation in the OntoUML Editor Eclipse plug-in. Subsection C.2.1 explains how to create an

OntoUML model in the standalone OntoUML Editor, while subsection C.2.2 deals with the

creation of OntoUML models in the OntoUML Editor Eclipse plug-in.

C.2.1 Creating an OntoUML Model in the Standalone OntoUML Editor

1. Execute the standalone OntoUML Editor;

2. Click on File→ New→ OntoUML Diagram→ Name the file→ Next→ Finish;

3. You are ready to create an OntoUML model.

C.2.2 Creating an OntoUML Model in the OntoUML Editor Eclipse
Plug-in

1. Execute Eclipse;

2. Create a project (if you do not have one): Click in File→ New→ Project. . .→ General

→ Project→ Next→ Name it→ Next→ Next→ Finish;

3. Create an OntoUML diagram: Right click on the folder just created→ New→ Example

→ OntoUML Diagram→ Next→ Give a name for the file→ Next→ Next→ Finish;

4. You are ready to create an OntoUML model.

C.3 Tips

Avoid using the functions “cut”, “copy” or “paste” in OntoUML Editor, because they may

corrupt your models. Instead, use the function “duplicate”, which is very similar. There are two

C.3 Tips 232

ways of using “duplicate”:

• Select the classes and relations by pressing Ctrl and when you have selected the last

element, keep Ctrl pressed and drag and drop the selection (using left mouse button) in a

suitable place for the new elements; or

• Select the classes and relations by pressing Ctrl → right click in one of the selected

elements→ Edit→ Duplicate→ drag and drop the new elements in a suitable place.

This tutorial (or a newer version) is also available at 87.

233

APPENDIX D -- OntoUML to Alloy ATL
Transformation Manual

This appendix explains how to install and execute the ATL transformation from OntoUML to

Alloy.

In order to install the ATL transformation from OntoUML to Alloy and create an OntoUML

model, you must follow the steps show in 88, which, at the writing of this thesis, are the steps

shown in the next sections.

D.1 Installing the Transformation

In order to install the ATL transformation from OntoUML to Alloy, you must follow the following

steps:

1. Download the version 3.4.2 of Eclipse Modeling Tools package for your OS1 and unzip it

(in case you do not have a working Eclipse);

2. Execute Eclipse;

3. Create an ATL project (if you do not have one): Click in File→ New→ Project. . .→
ATL→ ATL Project→ Next→ in “Name” put “OntoUML2Alloy” (without quotes)→
Finish→ Click in “Yes” in the “Open Associated Perspective” window;

4. Open your file manager and find the folder of your just created OntoUML2Alloy ATL

project. Then, download the files that are at http://ontouml.googlecode.com/svn/trunk/

OntoUML2Alloy to this folder;

5. Download the latest version of Alloy Analyzer from http://alloy.mit.edu/community/

software to your OntoUML2Alloy project folder;
1One can get this version at http://www.eclipse.org/downloads/packages/

eclipse-modeling-tools-includes-incubating-components/ganymedesr2.

D.2 Transforming an OntoUML Model into an Alloy Specification 234

D.2 Transforming an OntoUML Model into an Alloy
Specification

In order to transform an OntoUML model into an Alloy specification, you must follow the

following steps:

1. Execute Eclipse;

2. Click on Run → Run Configurations. . . → ATL Transformation → New launch

configuration→ In “Name” put “OntoUML2Alloy” (without quotes), inside “Project”,

in “Name” choose “OntoUML2Alloy” and in “ATL file”, choose “/OntoUML2Alloy/

OntoUML2Alloy.atl”. Within “Metamodels”, click on the “Workspace. . .” button, open

“OntoUML2Alloy” and select “OntoUML.ecore”. Within “Source Models”, click on

the “Workspace. . .” button and search and open your OntoUML model (the file with the

“.ontouml” extension and not the “.ontouml_diagram” one). Within “Target Models”, put

“/OntoUML2Alloy/you_can_delete_this_file” (without quotes) in the “Out:” field;

3. Click on the “Common” tab and select “Debug” and “Run” within “Display in favorites

menu”;

4. Click in “Apply”→ “Close”;

5. Click in the right side of the “Run” button→ “OntoUML2Alloy”. The OntoUML2Alloy

transformation will generate a file named “specification.als”;

6. Open your file manager and find the folder of your OntoUML2Alloy ATL project. Then

execute the file “alloy4.jar” (the Alloy Analyzer). Within Alloy Analyzer, click in “Open”

and find the file “specification.als”. Then click in “Options”→ “Visualize Automatically”.

Finally, click in “Execute”→ “Run run$1”;

7. You can optionally use our predefined theme to visualize the generated Kipke structure:

Within the window of the generated figure, click in “Theme” → “Load Theme. . .” →
Select “alloy_analyzer_theme_world_structure.thm”→ “Open”.

235

APPENDIX E -- Alloy Analyzer Themes

In this appendix, we show the visualization themes that we created for customizing the

visualization of the instances generated by the Alloy Analyzer. The theme shown in Listing 117

is to customize the visualization of the temporal ordering of worlds, as explained in subsection

5.6.1; and the theme shown in Listing 118 is to customize the visualization of the atoms by

projecting them in worlds. These themes are licensed under GPLv3 (see annex A).

Listing 117: Theme for visualization of the temporal ordering of worlds.

1 <?xml version="1.0"?>

2 <alloy>

3

4 <view>

5

6 <defaultnode visible="no"/>

7

8 <defaultedge visible="no"/>

9

10 <node>

11 <type name="Int"/>

12 <type name="String"/>

13 <type name="univ"/>

14 <type name="seq/Int"/>

15 </node>

16

17 <node label="TemporalWorld">

18 <type name="world_structure/TemporalWorld"/>

19 </node>

20

21 <node style="Bold" label="CurrentWorld">

Appendix E -- Alloy Analyzer Themes 236

22 <type name="world_structure/CurrentWorld"/>

23 </node>

24

25 <node style="Dashed" label="FutureWorld">

26 <type name="world_structure/FutureWorld"/>

27 </node>

28

29 <node style="Dotted" label="CounterfactualWorld">

30 <type name="world_structure/CounterfactualWorld"/>

31 </node>

32

33 <node style="Solid" label="PastWorld">

34 <type name="world_structure/PastWorld"/>

35 </node>

36

37 <node visible="yes" color="White">

38 <type name="World"/>

39 </node>

40

41 <edge color="Black" visible="yes" layout="yes">

42 <relation name="next"> <type name="World"/> <type name=

"World"/> </relation >

43 </edge>

44

45 </view>

46

47 </alloy>

Listing 118: Theme for visualization of atoms projected in worlds.

1 <?xml version="1.0"?>

2 <alloy>

3

4 <view>

5

6 <projection > <type name="World"/> </projection >

7

Appendix E -- Alloy Analyzer Themes 237

8 <defaultnode visible="no" color="White"/>

9

10 <defaultedge color="Black"/>

11

12 <node>

13 <type name="Int"/>

14 <type name="Man"/>

15 <type name="Organization"/>

16 <type name="String"/>

17 <type name="univ"/>

18 <type name="Woman"/>

19 <type name="World"/>

20 <type name="seq/Int"/>

21 <type name="world_structure/CounterfactualWorld"/>

22 <type name="world_structure/CurrentWorld"/>

23 <type name="world_structure/FutureWorld"/>

24 <type name="world_structure/PastWorld"/>

25 <type name="world_structure/TemporalWorld"/>

26 <set name="ActiveOrganization" type="Organization"/>

27 <set name="Adult" type="Person"/>

28 <set name="Child" type="Person"/>

29 <set name="DeceasedPerson" type="Person"/>

30 <set name="ExtinctOrganization" type="Organization"/>

31 <set name="FunctionalBrain" type="Brain"/>

32 <set name="FunctionalHeart" type="Heart"/>

33 <set name="LivingPerson" type="Person"/>

34 <set name="NonfunctionalBrain" type="Brain"/>

35 <set name="NonfunctionalHeart" type="Heart"/>

36 <set name="School" type="Organization"/>

37 <set name="Student" type="Person"/>

38 <set name="Teenager" type="Person"/>

39 </node>

40

41 <node label="BiologicalOrgan">

42 <set name="$BiologicalOrgan" type="Brain"/>

Appendix E -- Alloy Analyzer Themes 238

43 <set name="$BiologicalOrgan" type="Heart"/>

44 </node>

45

46 <node shape="Ellipse">

47 <type name="Person"/>

48 </node>

49

50 <node shape="Hexagon">

51 <type name="Enrollment"/>

52 </node>

53

54 <node shape="Trapezoid">

55 <type name="Brain"/>

56 <type name="Heart"/>

57 </node>

58

59 <node showlabel="no">

60 <set name="$w" type="Organization"/>

61 <set name="$w'" type="Brain"/>

62 <set name="$w''" type="Person"/>

63 <set name="$w'''" type="Brain"/>

64 <set name="$w''''" type="Heart"/>

65 <set name="$w'''''" type="

Person"/>

66 <set name="$w''''''" type

="Heart"/>

67 <set name="$w'''''''

" type="Person"/>

68 <set name="$w''''''&apos

;'" type="Organization"/>

69 <set name="$w''''''&apos

;''" type="Person"/>

70 <set name="$w''''''&apos

;'''" type="Person"/>

Appendix E -- Alloy Analyzer Themes 239

71 <set name="$w''''''&apos

;''''" type="Brain"/>

72 <set name="$w''''''&apos

;''''" type="Enrollment"/>

73 <set name="$w''''''&apos

;''''" type="Heart"/>

74 <set name="$w''''''&apos

;''''" type="Organization"/>

75 <set name="$w''''''&apos

;''''" type="Person"/>

76 </node>

77

78 <node visible="yes" showlabel="no">

79 <set name="domain_of_quantification" type="Brain"/>

80 <set name="domain_of_quantification" type="Enrollment"/

>

81 <set name="domain_of_quantification" type="Heart"/>

82 <set name="domain_of_quantification" type="Organization

"/>

83 <set name="domain_of_quantification" type="Person"/>

84 </node>

85

86 <edge visible="no" constraint="no">

87 <relation name="derived_study"> <type name="Enrollment"

/> <type name="Person"/> <type name="Organization"/>

</relation >

88 </edge>

89

90 </view>

91

92 </alloy>

240

ANNEX A -- GPLv3

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this

license document, but changing it is not allowed.

The GNU General Public License is a free, copyleft license for software and other kinds of

works.

The licenses for most software and other practical works are designed to take away your

freedom to share and change the works. By contrast, the GNU General Public License is intended

to guarantee your freedom to share and change all versions of a program–to make sure it remains

free software for all its users. We, the Free Software Foundation, use the GNU General Public

License for most of our software; it applies also to any other work released this way by its

authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for them if you wish), that you receive source code or can get it if you want it, that

you can change the software or use pieces of it in new free programs, and that you know you can

do these things.

To protect your rights, we need to prevent others from denying you these rights or asking

you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies

of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

pass on to the recipients the same freedoms that you received. You must make sure that they,

Annex A -- GPLv3 241

too, receive or can get the source code. And you must show them these terms so they know their

rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright

on the software, and (2) offer you this License giving you legal permission to copy, distribute

and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty

for this free software. For both users’ and authors’ sake, the GPL requires that modified versions

be marked as changed, so that their problems will not be attributed erroneously to authors of

previous versions.

Some devices are designed to deny users access to install or run modified versions of the

software inside them, although the manufacturer can do so. This is fundamentally incompatible

with the aim of protecting users’ freedom to change the software. The systematic pattern of such

abuse occurs in the area of products for individuals to use, which is precisely where it is most

unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for

those products. If such problems arise substantially in other domains, we stand ready to extend

this provision to those domains in future versions of the GPL, as needed to protect the freedom

of users.

Finally, every program is threatened constantly by software patents. States should not allow

patents to restrict development and use of software on general-purpose computers, but in those

that do, we wish to avoid the special danger that patents applied to a free program could make it

effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the

program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as

semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee

is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion

requiring copyright permission, other than the making of an exact copy. The resulting

Annex A -- GPLv3 242

work is called a “modified version” of the earlier work or a work “based on” the earlier

work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make

you directly or secondarily liable for infringement under applicable copyright law, except

executing it on a computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the public, and in some

countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or

receive copies. Mere interaction with a user through a computer network, with no transfer

of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it

includes a convenient and prominently visible feature that (1) displays an appropriate

copyright notice, and (2) tells the user that there is no warranty for the work (except to

the extent that warranties are provided), that licensees may convey the work under this

License, and how to view a copy of this License. If the interface presents a list of user

commands or options, such as a menu, a prominent item in the list meets this criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making

modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined

by a recognized standards body, or, in the case of interfaces specified for a particular

programming language, one that is widely used among developers working in that

language.

The “System Libraries” of an executable work include anything, other than the work as a

whole, that (a) is included in the normal form of packaging a Major Component, but which

is not part of that Major Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an implementation is

available to the public in source code form. A “Major Component”, in this context, means

a major essential component (kernel, window system, and so on) of the specific operating

system (if any) on which the executable work runs, or a compiler used to produce the

work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code

Annex A -- GPLv3 243

needed to generate, install, and (for an executable work) run the object code and to modify

the work, including scripts to control those activities. However, it does not include the

work’s System Libraries, or general-purpose tools or generally available free programs

which are used unmodified in performing those activities but which are not part of the

work. For example, Corresponding Source includes interface definition files associated

with source files for the work, and the source code for shared libraries and dynamically

linked subprograms that the work is specifically designed to require, such as by intimate

data communication or control flow between those subprograms and other parts of the

work.

The Corresponding Source need not include anything that users can regenerate automati-

cally from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,

and are irrevocable provided the stated conditions are met. This License explicitly affirms

your unlimited permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its content, constitutes a

covered work. This License acknowledges your rights of fair use or other equivalent, as

provided by copyright law.

You may make, run and propagate covered works that you do not convey, without

conditions so long as your license otherwise remains in force. You may convey covered

works to others for the sole purpose of having them make modifications exclusively for

you, or provide you with facilities for running those works, provided that you comply with

the terms of this License in conveying all material for which you do not control copyright.

Those thus making or running the covered works for you must do so exclusively on your

behalf, under your direction and control, on terms that prohibit them from making any

copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated

below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any

applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted

Annex A -- GPLv3 244

on 20 December 1996, or similar laws prohibiting or restricting circumvention of such

measures.

When you convey a covered work, you waive any legal power to forbid circumvention of

technological measures to the extent such circumvention is effected by exercising rights

under this License with respect to the covered work, and you disclaim any intention to

limit operation or modification of the work as a means of enforcing, against the work’s

users, your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an

appropriate copyright notice; keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code; keep intact all

notices of the absence of any warranty; and give all recipients a copy of this License along

with the Program.

You may charge any price or no price for each copy that you convey, and you may offer

support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the

Program, in the form of source code under the terms of section 4, provided that you also

meet all of these conditions:

(a) The work must carry prominent notices stating that you modified it, and giving a

relevant date.

(b) The work must carry prominent notices stating that it is released under this License

and any conditions added under section 7. This requirement modifies the requirement

in section 4 to “keep intact all notices”.

(c) You must license the entire work, as a whole, under this License to anyone who

comes into possession of a copy. This License will therefore apply, along with any

applicable section 7 additional terms, to the whole of the work, and all its parts,

regardless of how they are packaged. This License gives no permission to license

the work in any other way, but it does not invalidate such permission if you have

separately received it.

(d) If the work has interactive user interfaces, each must display Appropriate Legal

Notices; however, if the Program has interactive interfaces that do not display

Annex A -- GPLv3 245

Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are

not by their nature extensions of the covered work, and which are not combined with it

such as to form a larger program, in or on a volume of a storage or distribution medium, is

called an “aggregate” if the compilation and its resulting copyright are not used to limit the

access or legal rights of the compilation’s users beyond what the individual works permit.

Inclusion of a covered work in an aggregate does not cause this License to apply to the

other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and

5, provided that you also convey the machine-readable Corresponding Source under the

terms of this License, in one of these ways:

(a) Convey the object code in, or embodied in, a physical product (including a physical

distribution medium), accompanied by the Corresponding Source fixed on a durable

physical medium customarily used for software interchange.

(b) Convey the object code in, or embodied in, a physical product (including a physical

distribution medium), accompanied by a written offer, valid for at least three years and

valid for as long as you offer spare parts or customer support for that product model,

to give anyone who possesses the object code either (1) a copy of the Corresponding

Source for all the software in the product that is covered by this License, on a durable

physical medium customarily used for software interchange, for a price no more than

your reasonable cost of physically performing this conveying of source, or (2) access

to copy the Corresponding Source from a network server at no charge.

(c) Convey individual copies of the object code with a copy of the written offer to

provide the Corresponding Source. This alternative is allowed only occasionally and

noncommercially, and only if you received the object code with such an offer, in

accord with subsection 6b.

(d) Convey the object code by offering access from a designated place (gratis or for a

charge), and offer equivalent access to the Corresponding Source in the same way

through the same place at no further charge. You need not require recipients to

copy the Corresponding Source along with the object code. If the place to copy the

object code is a network server, the Corresponding Source may be on a different

server (operated by you or a third party) that supports equivalent copying facilities,

Annex A -- GPLv3 246

provided you maintain clear directions next to the object code saying where to find the

Corresponding Source. Regardless of what server hosts the Corresponding Source,

you remain obligated to ensure that it is available for as long as needed to satisfy

these requirements.

(e) Convey the object code using peer-to-peer transmission, provided you inform other

peers where the object code and Corresponding Source of the work are being offered

to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the

Corresponding Source as a System Library, need not be included in conveying the object

code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal

property which is normally used for personal, family, or household purposes, or (2)

anything designed or sold for incorporation into a dwelling. In determining whether a

product is a consumer product, doubtful cases shall be resolved in favor of coverage. For

a particular product received by a particular user, “normally used” refers to a typical or

common use of that class of product, regardless of the status of the particular user or

of the way in which the particular user actually uses, or expects or is expected to use,

the product. A product is a consumer product regardless of whether the product has

substantial commercial, industrial or non-consumer uses, unless such uses represent the

only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-

rization keys, or other information required to install and execute modified versions of a

covered work in that User Product from a modified version of its Corresponding Source.

The information must suffice to ensure that the continued functioning of the modified

object code is in no case prevented or interfered with solely because modification has been

made.

If you convey an object code work under this section in, or with, or specifically for use

in, a User Product, and the conveying occurs as part of a transaction in which the right

of possession and use of the User Product is transferred to the recipient in perpetuity or

for a fixed term (regardless of how the transaction is characterized), the Corresponding

Source conveyed under this section must be accompanied by the Installation Information.

But this requirement does not apply if neither you nor any third party retains the ability to

install modified object code on the User Product (for example, the work has been installed

in ROM).

Annex A -- GPLv3 247

The requirement to provide Installation Information does not include a requirement to

continue to provide support service, warranty, or updates for a work that has been modified

or installed by the recipient, or for the User Product in which it has been modified or

installed. Access to a network may be denied when the modification itself materially

and adversely affects the operation of the network or violates the rules and protocols for

communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with

this section must be in a format that is publicly documented (and with an implementation

available to the public in source code form), and must require no special password or key

for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making

exceptions from one or more of its conditions. Additional permissions that are applicable

to the entire Program shall be treated as though they were included in this License, to the

extent that they are valid under applicable law. If additional permissions apply only to part

of the Program, that part may be used separately under those permissions, but the entire

Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional

permissions from that copy, or from any part of it. (Additional permissions may be written

to require their own removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work, for which you have

or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered

work, you may (if authorized by the copyright holders of that material) supplement the

terms of this License with terms:

(a) Disclaiming warranty or limiting liability differently from the terms of sections 15

and 16 of this License; or

(b) Requiring preservation of specified reasonable legal notices or author attributions in

that material or in the Appropriate Legal Notices displayed by works containing it; or

(c) Prohibiting misrepresentation of the origin of that material, or requiring that modified

versions of such material be marked in reasonable ways as different from the original

version; or

Annex A -- GPLv3 248

(d) Limiting the use for publicity purposes of names of licensors or authors of the

material; or

(e) Declining to grant rights under trademark law for use of some trade names,

trademarks, or service marks; or

(f) Requiring indemnification of licensors and authors of that material by anyone who

conveys the material (or modified versions of it) with contractual assumptions of

liability to the recipient, for any liability that these contractual assumptions directly

impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the

meaning of section 10. If the Program as you received it, or any part of it, contains a notice

stating that it is governed by this License along with a term that is a further restriction,

you may remove that term. If a license document contains a further restriction but permits

relicensing or conveying under this License, you may add to a covered work material

governed by the terms of that license document, provided that the further restriction does

not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the

relevant source files, a statement of the additional terms that apply to those files, or a notice

indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately

written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this

License. Any attempt otherwise to propagate or modify it is void, and will automatically

terminate your rights under this License (including any patent licenses granted under the

third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular

copyright holder is reinstated (a) provisionally, unless and until the copyright holder

explicitly and finally terminates your license, and (b) permanently, if the copyright holder

fails to notify you of the violation by some reasonable means prior to 60 days after the

cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if

the copyright holder notifies you of the violation by some reasonable means, this is the

first time you have received notice of violation of this License (for any work) from that

Annex A -- GPLv3 249

copyright holder, and you cure the violation prior to 30 days after your receipt of the

notice.

Termination of your rights under this section does not terminate the licenses of parties

who have received copies or rights from you under this License. If your rights have been

terminated and not permanently reinstated, you do not qualify to receive new licenses for

the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.

Ancillary propagation of a covered work occurring solely as a consequence of using

peer-to-peer transmission to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or modify any covered

work. These actions infringe copyright if you do not accept this License. Therefore, by

modifying or propagating a covered work, you indicate your acceptance of this License to

do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from

the original licensors, to run, modify and propagate that work, subject to this License. You

are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or

substantially all assets of one, or subdividing an organization, or merging organizations.

If propagation of a covered work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever licenses to the work

the party’s predecessor in interest had or could give under the previous paragraph, plus

a right to possession of the Corresponding Source of the work from the predecessor in

interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or

affirmed under this License. For example, you may not impose a license fee, royalty, or

other charge for exercise of rights granted under this License, and you may not initiate

litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent

claim is infringed by making, using, selling, offering for sale, or importing the Program or

any portion of it.

11. Patents.

Annex A -- GPLv3 250

A “contributor” is a copyright holder who authorizes use under this License of the Program

or a work on which the Program is based. The work thus licensed is called the contributor’s

“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by

the contributor, whether already acquired or hereafter acquired, that would be infringed

by some manner, permitted by this License, of making, using, or selling its contributor

version, but do not include claims that would be infringed only as a consequence of further

modification of the contributor version. For purposes of this definition, “control” includes

the right to grant patent sublicenses in a manner consistent with the requirements of this

License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under

the contributor’s essential patent claims, to make, use, sell, offer for sale, import and

otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or

commitment, however denominated, not to enforce a patent (such as an express permission

to practice a patent or covenant not to sue for patent infringement). To “grant” such a

patent license to a party means to make such an agreement or commitment not to enforce

a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding

Source of the work is not available for anyone to copy, free of charge and under the terms

of this License, through a publicly available network server or other readily accessible

means, then you must either (1) cause the Corresponding Source to be so available, or

(2) arrange to deprive yourself of the benefit of the patent license for this particular work,

or (3) arrange, in a manner consistent with the requirements of this License, to extend

the patent license to downstream recipients. “Knowingly relying” means you have actual

knowledge that, but for the patent license, your conveying the covered work in a country,

or your recipient’s use of the covered work in a country, would infringe one or more

identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,

or propagate by procuring conveyance of, a covered work, and grant a patent license

to some of the parties receiving the covered work authorizing them to use, propagate,

modify or convey a specific copy of the covered work, then the patent license you grant is

automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,

Annex A -- GPLv3 251

prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights

that are specifically granted under this License. You may not convey a covered work if

you are a party to an arrangement with a third party that is in the business of distributing

software, under which you make payment to the third party based on the extent of your

activity of conveying the work, and under which the third party grants, to any of the parties

who would receive the covered work from you, a discriminatory patent license (a) in

connection with copies of the covered work conveyed by you (or copies made from those

copies), or (b) primarily for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement, or that patent license

was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or

other defenses to infringement that may otherwise be available to you under applicable

patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that

contradict the conditions of this License, they do not excuse you from the conditions of

this License. If you cannot convey a covered work so as to satisfy simultaneously your

obligations under this License and any other pertinent obligations, then as a consequence

you may not convey it at all. For example, if you agree to terms that obligate you to collect

a royalty for further conveying from those to whom you convey the Program, the only

way you could satisfy both those terms and this License would be to refrain entirely from

conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or

combine any covered work with a work licensed under version 3 of the GNU Affero

General Public License into a single combined work, and to convey the resulting work.

The terms of this License will continue to apply to the part which is the covered work, but

the special requirements of the GNU Affero General Public License, section 13, concerning

interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU

General Public License from time to time. Such new versions will be similar in spirit to

the present version, but may differ in detail to address new problems or concerns.

Annex A -- GPLv3 252

Each version is given a distinguishing version number. If the Program specifies that a

certain numbered version of the GNU General Public License “or any later version” applies

to it, you have the option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software Foundation. If the Program

does not specify a version number of the GNU General Public License, you may choose

any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General

Public License can be used, that proxy’s public statement of acceptance of a version

permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no

additional obligations are imposed on any author or copyright holder as a result of your

choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED

BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM

“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE

ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS

WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE

COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO

MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE

LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS

OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE

WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Annex A -- GPLv3 253

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given

local legal effect according to their terms, reviewing courts shall apply local law that

most closely approximates an absolute waiver of all civil liability in connection with the

Program, unless a warranty or assumption of liability accompanies a copy of the Program

in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to

the public, the best way to achieve this is to make it free software which everyone can

redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start

of each source file to most effectively state the exclusion of warranty; and each file should

have at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <textyear> <name of author>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:

Annex A -- GPLv3 254

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it

under certain conditions; type `show c' for details.

The hypothetical commands show w and show c should show the appropriate parts of the

General Public License. Of course, your program’s commands might be different; for a

GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign

a “copyright disclaimer” for the program, if necessary. For more information on this, and

how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into

proprietary programs. If your program is a subroutine library, you may consider it more

useful to permit linking proprietary applications with the library. If this is what you want

to do, use the GNU Lesser General Public License instead of this License. But first, please

read http://www.gnu.org/philosophy/why-not-lgpl.html.

255

ANNEX B -- EPLv1

Eclipse Public License -v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS

ECLIPSE PUBLIC LICENSE (“AGREEMENT”). ANY USE, REPRODUCTION OR DIS-

TRIBUTION OF THE PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS

AGREEMENT.

1. DEFINITIONS

“Contribution” means:

a) in the case of the initial Contributor, the initial code and documentation distributed under

this Agreement, and

b) in the case of each subsequent Contributor:

i) changes to the Program, and

ii) additions to the Program;

where such changes and/or additions to the Program originate from and are distributed by

that particular Contributor. A Contribution ’originates’ from a Contributor if it was added to the

Program by such Contributor itself or anyone acting on such Contributor’s behalf. Contributions

do not include additions to the Program which: (i) are separate modules of software distributed

in conjunction with the Program under their own license agreement, and (ii) are not derivative

works of the Program.

“Contributor” means any person or entity that distributes the Program.

“Licensed Patents” mean patent claims licensable by a Contributor which are necessarily

infringed by the use or sale of its Contribution alone or when combined with the Program.

“Program” means the Contributions distributed in accordance with this Agreement.

“Recipient” means anyone who receives the Program under this Agreement, including all

Annex B -- EPLv1 256

Contributors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-

exclusive, worldwide, royalty-free copyright license to reproduce, prepare derivative works of,

publicly display, publicly perform, distribute and sublicense the Contribution of such Contributor,

if any, and such derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a

non-exclusive, worldwide, royalty-free patent license under Licensed Patents to make, use, sell,

offer to sell, import and otherwise transfer the Contribution of such Contributor, if any, in source

code and object code form. This patent license shall apply to the combination of the Contribution

and the Program if, at the time the Contribution is added by the Contributor, such addition of the

Contribution causes such combination to be covered by the Licensed Patents. The patent license

shall not apply to any other combinations which include the Contribution. No hardware per se is

licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to its

Contributions set forth herein, no assurances are provided by any Contributor that the Program

does not infringe the patent or other intellectual property rights of any other entity. Each

Contributor disclaims any liability to Recipient for claims brought by any other entity based on

infringement of intellectual property rights or otherwise. As a condition to exercising the rights

and licenses granted hereunder, each Recipient hereby assumes sole responsibility to secure any

other intellectual property rights needed, if any. For example, if a third party patent license is

required to allow Recipient to distribute the Program, it is Recipient’s responsibility to acquire

that license before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its

Contribution, if any, to grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own

license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties and conditions, express

and implied, including warranties or conditions of title and non-infringement, and implied

Annex B -- EPLv1 257

warranties or conditions of merchantability and fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages, including

direct, indirect, special, incidental and consequential damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by that Contributor

alone and not by any other party; and

iv) states that source code for the Program is available from such Contributor, and informs

licensees how to obtain it in a reasonable manner on or through a medium customarily used for

software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner

that reasonably allows subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to

end users, business partners and the like. While this license is intended to facilitate the

commercial use of the Program, the Contributor who includes the Program in a commercial

product offering should do so in a manner which does not create potential liability for other

Contributors. Therefore, if a Contributor includes the Program in a commercial product offering,

such Contributor (“Commercial Contributor”) hereby agrees to defend and indemnify every other

Contributor (“Indemnified Contributor”) against any losses, damages and costs (collectively

“Losses”) arising from claims, lawsuits and other legal actions brought by a third party against

the Indemnified Contributor to the extent caused by the acts or omissions of such Commercial

Contributor in connection with its distribution of the Program in a commercial product offering.

The obligations in this section do not apply to any claims or Losses relating to any actual

or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor

must: a) promptly notify the Commercial Contributor in writing of such claim, and b) allow

the Commercial Contributor to control, and cooperate with the Commercial Contributor in, the

defense and any related settlement negotiations. The Indemnified Contributor may participate in

any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering,

Annex B -- EPLv1 258

Product X. That Contributor is then a Commercial Contributor. If that Commercial Contributor

then makes performance claims, or offers warranties related to Product X, those performance

claims and warranties are such Commercial Contributor’s responsibility alone. Under this

section, the Commercial Contributor would have to defend claims against the other Contributors

related to those performance claims and warranties, and if a court requires any other Contributor

to pay any damages as a result, the Commercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS

PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY

KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY

WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely responsible for

determining the appropriateness of using and distributing the Program and assumes all risks

associated with its exercise of rights under this Agreement , including but not limited to the

risks and costs of program errors, compliance with applicable laws, damage to or loss of data,

programs or equipment, and unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT

NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED

HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall

not affect the validity or enforceability of the remainder of the terms of this Agreement, and

without further action by the parties hereto, such provision shall be reformed to the minimum

extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a cross-claim or

counterclaim in a lawsuit) alleging that the Program itself (excluding combinations of the Program

with other software or hardware) infringes such Recipient’s patent(s), then such Recipient’s

Annex B -- EPLv1 259

rights granted under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of

the material terms or conditions of this Agreement and does not cure such failure in a reasonable

period of time after becoming aware of such noncompliance. If all Recipient’s rights under this

Agreement terminate, Recipient agrees to cease use and distribution of the Program as soon as

reasonably practicable. However, Recipient’s obligations under this Agreement and any licenses

granted by Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid

inconsistency the Agreement is copyrighted and may only be modified in the following manner.

The Agreement Steward reserves the right to publish new versions (including revisions) of

this Agreement from time to time. No one other than the Agreement Steward has the right

to modify this Agreement. The Eclipse Foundation is the initial Agreement Steward. The

Eclipse Foundation may assign the responsibility to serve as the Agreement Steward to a suitable

separate entity. Each new version of the Agreement will be given a distinguishing version

number. The Program (including Contributions) may always be distributed subject to the version

of the Agreement under which it was received. In addition, after a new version of the Agreement

is published, Contributor may elect to distribute the Program (including its Contributions) under

the new version. Except as expressly stated in Sections 2(a) and 2(b) above, Recipient receives no

rights or licenses to the intellectual property of any Contributor under this Agreement, whether

expressly, by implication, estoppel or otherwise. All rights in the Program not expressly granted

under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual

property laws of the United States of America. No party to this Agreement will bring a legal

action under this Agreement more than one year after the cause of action arose. Each party

waives its rights to a jury trial in any resulting litigation.

