
Applied Ontology 17 (2022) 365–399
DOI 10.3233/AO-220269

A Goal-Oriented Framework for Ontology
Reuse
Cássio C. Reginatoa, Jordana S. Salamona,*, Gabriel G. Nogueiraa, Monalessa P. Barcellosa,
Vítor E. Silva Souzaa, Maxwell E. Monteiroa, Renata Guizzardia

a
 Ontology & Conceptual Modeling Research Group (NEMO), Computer Science Department,

Federal University of Espiríto Santo – Vitória – ES – Brazil
E-mail: cassioreginato86@gmail.com, jssalamon@inf.ufes.br, gabriel.g.nogueira@aluno.ufes.br,
monalessa@inf.ufes.br, vitor.souza@ufes.br, maxmonte@ifes.edu.br, renataguizzardi@gmail.com

Abstract. Ontologies have been successfully used to assign semantics in the Semantic Web context, to support integration of
data from different systems or different sources, and to enable reasoning. However, building ontologies is not a trivial task.
Ontology reuse can help in this matter. The search and selection of ontologies to be reused should consider the alignment between
their scope and the scope of the ontology being developed. In this paper, we discuss how goal modeling can be helpful in this
context and we present GO-FOR, a framework in which goals are the central elements to promote ontology reuse. GO-FOR
comprises a conceptual architecture, a goal-oriented ontology development process and a supporting tool. In GO-FOR we
introduce Goal-Oriented Ontology Patterns (GOOPs) as a new type of pattern to be applied to develop ontologies in a goal-
oriented approach. Results of the use of GO-FOR to build an ontology used to integrate patient examination data are also shown
in this paper.
Keywords. Ontology, Reuse, Goal Modeling, Pattern, Ontology Integration
Accepted by: Aldo Gangemi

1. Introduction

Ontologies have been recognized as conceptual tools of great importance in Computer Science since
the end of the 1960s, mainly in areas such as Data Modeling (conceptual modeling) and Artificial
Intelligence (Davis, 1998; Mealy, 1967). In the last fifteen years, there has been an explosion of works
related to ontologies in various segments of Computer Science. This has been motivated by the
recognition of the importance of the use of ontologies in semantic interoperability tasks (e.g., system
integration and data integration), in general, and by its role in the Semantic Web development, in
particular. For instance, applications that process Linked Data available on the Web are programmed to
understand well-known vocabularies (schemas, ontologies) at the time of their writing. Defining new
vocabularies for every new data set we publish without properly linking to existing vocabularies makes
this data unintelligible to existing applications. Reusing the appropriate vocabularies reduces
heterogeneity by relying on ontological agreement (Heath & Bizer, 2011).

Nowadays, ontology engineers are supported by a wide range of ontology engineering methods and
tools. However, building ontologies is still a complex task even for experts (Noppens & Liebig, 2009).
Some of the main reasons for that are: (i) the ontology engineer must have a consistent and mature view

* Corresponding author. E-mail: jssalamon@inf.ufes.br. Address: Ontology & Conceptual Modeling Research Group (NEMO), Computer Science Department, Federal University of

Espiríto Santo – Fernando Ferrari Avenue, 514, Goiabeiras - Vitória – ES – Brazil, ZIP Code: 29075-910. Tel. No.: +55 27 4009-2137

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

of the domain being represented; (ii) ontology representation languages (e.g. OWL, RDF) are usually not
very expressive and leave much room for interpretation; and (iii) even when we aim at developing
reference ontologies (i.e. conceptual models without concern with computational properties), developing
the right conceptual model is still open to interpretation and face problems such as requirements and
scope definition.

Moreover, the emergent scenario has required more comprehensive and high-quality ontologies to
solve problems involving semantic issues. In this context, developing a new ontology by reusing existing
ontologies may be useful. Ontology reuse allows speeding up the ontology development process, saving
time and money, and promoting the application of good practices. However, ontology reuse in general is
a hard research issue, and one of the most challenging and neglected areas of Ontology Engineering
(Gangemi & Presutti, 2009). For example, ontology engineers still face problems to find and select the
right ontologies for reuse and integrate several ontologies into a new ontology (Park et al., 2011).

In a recent study, Fernández-López et al. (2019) point out that although ontology reuse is recommended
in the community, in practice it is not yet consolidated. Factors such as language heterogeneity,
deficiencies in the documentation and lack of information about the ontology are obstacles for finding
and reusing ontologies. Even though one of the main characteristics of ontologies has been claimed to be
reusability, the practice has shown that it has not been achieved yet.

One of the challenges of ontology reuse is the obscurity of the design rationale of the available
ontologies (Gangemi & Presutti, 2009). Design rationale concerns the reasons for decisions made during
a design process (Jarczyk et al., 1992). Unknown design rationale makes it difficult to select the
ontologies to be reused as well as to understand them, which is crucial to integrate them properly. We
advocate the use of Goal-Oriented Requirements Engineering (GORE) to make the ontology design
rationale explicit and promote ontology reuse (Van Lamsweerde, 2001). GORE has been used to provide
design rationale in Software Engineering, explaining from where a requirement came and which
stakeholders’ goals it meets (Van Lamsweerde, 2001). In Ontology Engineering, we argue that GORE
helps explain the rationale behind ontology selection, because motivational elements (i.e., goals) reveal
the reasons behind the development of an ontology (or ontology pattern), besides providing a notion of
the kind of knowledge that is represented in the ontology.

The work presented in this paper is part of a larger research project whose main research question is
how the use of GORE can improve the understanding of ontology scope and design rationale and
contribute to ontology reuse. The motivation behind the project came from practical experiences in our
research group and from literature. In (Salamon et al., 2018), we investigated the literature about ontology
reuse (more specifically regarding ontology integration and merging) and we noticed that the lack of
explicit design rationale and of a concern with ontology integration in the ontology development process
as a whole has hampered reuse. Note that what makes GORE special is the possibility to use goals to
make explicit the ‘whys’ behind requirements. We were inspired by the approach presented in (Fernandes
et al., 2011), which adopts competency questions as a strategy to identify ontology’s scope and
requirements, and it profits from GORE potential to make clear the design rationale (i.e., the motivation
behind CQs). In this work, we benefit from this clarification in a framework to support ontology reuse.

This paper presents GO-FOR, a Goal-Oriented Framework for Ontology Reuse in which we apply
GORE in Ontology Engineering to express a design rationale to ontology model fragments. In GO-FOR,
ontology models are depicted in self-contained fragments (i.e., domain design ontology patterns) related
to goals. These model fragments are self-contained ontology structures called goal-oriented ontology
patterns (GOOP). Thus, goals can be used as parameters to support ontology shareability. GO-FOR aids
in the creation, storage, and reuse of GOOPs, promoting ontology development with and for reuse. A
partial view of GO-FOR was introduced in Reginato et al. (2019), focusing on its conceptual architecture.
In this paper, we extend (Reginato et al., 2019) by providing a more comprehensive view of GO-FOR
and detailing all its components: a conceptual architecture, an ontology development process and a

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

supporting tool. We also present a new application of GO-FOR in a real case scenario in the health care
(particularly, laboratory test) domain.

The main contributions of this paper are: (i) the framework itself (GO-FOR), which allows connecting
ontology fragments with the goals they meet (giving rise to GOOPs), storing the GOOPs in a repository
and retrieving them for reuse; (ii) the goal-oriented and pattern-based process for ontology development
reusing GOOPs and other ontology fragments; and (iii) GOOP-Hub, the tool developed to aid GO-FOR
use and support ontology reuse. This work contributes to the state-of-the-art by exploring the use of
GORE in the context of ontology reuse and to the state-of-the-practice by providing a tool to store and
reuse ontology fragments (GOOPs) based on the goals they achieve.

This paper is organized as follows: Section 2 provides the background for the paper; Section 3 presents
the principles behind GO-FOR; Section 4 describes the GO-FOR conceptual architecture; Section 5
presents the GO-FOR process; Section 6 concerns GOOP-Hub, the GO-FOR supporting tool; Section 7
addresses GO-FOR use and reports the application of GO-FOR to build an ontology to integrate patient
examination data; Section 8 discusses related works; and Section 9 presents our final considerations.

2. Background

2.1. Ontologies

“An ontology is a formal, explicit specification of a shared conceptualization” (Struder et al., 1998).
Here, “conceptualization” refers to an abstract model of some phenomenon in the real world that identifies
the relevant concepts of this phenomenon; “explicit” means that the types of concepts used and the
constraints imposed on their use are explicitly defined; “formal” refers to the fact that an ontology should
be interpretable by machines; and “shared” reflects that ontologies must capture consensual based
knowledge accepted by a community” (Struder et al., 1998).

There are several classifications for ontologies. An important distinction differentiates ontologies as
conceptual models, called reference ontologies, from ontologies as computational artifacts, called
operational ontologies. In general, we advocate for an approach that considers both ontology types
(Guizzardi, 2007). First, a reference ontology is constructed with the goal of making the best possible
description of the domain in reality, representing a (conceptual) model of consensus within a community,
regardless of its computational properties. Once users have agreed on a common conceptualization,
operational versions (machine-readable ontologies) of a reference ontology may be implemented.
Contrary to reference ontologies, operational ontologies are designed with the focus on guaranteeing
desirable computational properties.

2.2. Ontology Reuse

Reusability has long been recognized as a key attribute of ontologies, yet the principles and practice of
reuse remain underdeveloped. The current lack of design through reuse presents a serious problem for the
ontology community. Currently, we find no formal definition of ontology reuse widely accepted within
the community (Katsumi & Grüninger, 2016). In general, reuse can be defined as the process in which
available (ontological) knowledge is used as input to generate new ontologies (Bontas et al., 2005). It is
as a special case of design; intuitively, it refers to the task of taking some existing ontology and
manipulating it in some way in order to satisfy the design requirements. Some more specific, related, and
sometimes overlapping subtypes of reuse have been defined, such as merging and alignment, integration,
modular or safe reuse, and the application of ontology patterns (Katsumi & Grüninger, 2016).

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

According to Carriero et al. (2020), nowadays there are several approaches to ontology reuse, with
different motivations or implementations. For instance, direct reuse of existing standard or popular
ontologies is typically encouraged by institutions and community consortia. Research communities and
communities of practice also suggest indirect approaches (i.e., by designing ontologies tailored to a use
case and aligning them to standard or popular ones when appropriate), or hybrid approaches.

An important and challenging task of ontology reuse is to select the ontologies to be reused. It is a
highly subjective task, often manually performed by experienced ontology engineers, who select
ontologies that intuitively fit for the purpose. Different motivations can guide ontology selection, such as
(i) reuse by standardization, when the reused ontology is issued by authoritative organizations, like ISO,
W3 Consortium, and professional or community consortia; (ii) reuse by popularity, when the reused
ontology is selected for being popular (i.e., very reused); and (iii) reuse by cognitive analysis, when the
ontology engineer defines the requirements of the new ontology to be developed and considers them to
decide what to reuse, e.g., existing design components, such as foundational ontologies or ontology
patterns (Carriero et al., 2020).

Ontology patterns (OPs) (also known as ontology design patterns (ODPs)) are an emerging approach
that favors reuse of encoded experiences and good practices (Falbo et al., 2013). Patterns are vehicles for
encapsulating knowledge. They are considered one of the most effective means for naming, organizing,
and reasoning about design knowledge. According to Buchmann et al. (2007), a pattern describes a
particular recurring problem that arises in specific contexts and presents a well-proven solution for the
problem. Thus, OPs are modeling solutions to solve recurrent ontology development problems (Presutti
et al., 2009). Experiments, such as the ones conducted by Blomqvist et al. (2009), show that ontology
engineers perceive OPs as useful, and that by using OPs, the quality and usability of the resulting
ontologies are improved.

Patterns are often considered and applied separately. However, no pattern is an island. Contrariwise,
patterns are fond of company: sometimes with one pattern as an alternative to another, sometimes with
one pattern as an adjunct to another, sometimes with a number of patterns bound together as a tightly-
knit group (Buchmann et al., 2007). Thus, when applying a pattern, it is important to understand and take
its relationships into account (Falbo et al., 2013).

In the literature, there are some works presenting proposals on the use and storage of ontology patterns
or ontologies to promote reuse in ontology development. Here, we highlight three of them: Ruy et al.
(2015), Gangemi and Presutti (2009) and Caldarola and Rinaldi (2016). According to Ruy et al. (2015),
reuse is focused on foundational and domain patterns. The former are patterns extracted from the
foundations and rules of a foundational ontology and, when reused by analogy, their structure is
reproduced in the ontology being developed. The latter are patterns that capture the core knowledge of a
domain and, when reused by extension, the new ontology carries the concepts and relations from the
pattern. In the work presented by Gangemi and Presutti (2009), the researchers use a Software
Engineering approach to catalog content ontology design patterns. Each pattern is associated with a
catalog entry including information such as name, competency questions and scenarios. The patterns are
cataloged and stored within a repository. In the work presented by Caldarola and Rinaldi (2016), a
framework for ontology reuse is proposed, but the stored and reused resources are ontologies, not
ontology patterns.

Reuse is not an isolated process. It must be performed to support ontology development. Thus, it is
necessary to consider reuse in the broader context of ontology development. However, results of a
mapping study of the literature (Salamon et al., 2018) showed that, in the context of ontology integration
and merging, most works focus on integrating ontologies already selected to be reused (i.e., given two
ontologies, how to integrate them), i.e., they do not consider the ontology development process as a
whole. Among the works that address reuse in a broader context, we can cite Blomqvist et al. (2016),
which addresses reuse in the context of a collaborative, incremental, and iterative method for pattern-

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

based ontology design, extending the work presented by Gangemi and Presutti (2009). Leung et al.
(2011), in turn, define a set of guidelines for selecting ontology reuse methods and proposes an ontology
development methodology that integrates ontology reuse methods and a system to support ontology
integration. According to Cuenca et al. (2017), reuse is considered to aid ontology development within
an ontology network development process. Last, Pinto and Martins (2001) presents a general
methodology to guide ontology integration, with activities describing general steps that can be used
alongside different ontology building methodologies.

In the last years, some ontology engineering methods have been derived from modern software
engineering techniques. They take an agile perspective into account aiming at alleviating ontology
development complexity by adopting simple tools, methodological guidance, and reinforcing reuse. Some
of these works, are Upon Lite (Nicola & Missikoff, 2016), SAMOD (Peroni, 2017), Test-Driven
Development of Ontologies (Keet and Ławrynowicz, 2016), FORZA (Keet et al., 2013) and the work by
Blomqvist et al. (2016), cited before.

Upon Lite (Nicola & Missikoff, 2016) proposes an agile method aimed at domain experts with generic
steps for ontology engineering. Reuse is mainly addressed in the first steps, where experts must create a
domain-specific terminology and enrich it by associating a textual description based on knowledge
resources reuse (e.g., domain-related standards, reference textual documents, authoritative resources, and
ontologies that, if available, must be linked to the already defined terminology). However, how to perform
this link between the proposed terminology and the ontologies is not addressed by the methodology.

SAMOD (Peroni, 2017) prescribes an iterative process with generic steps and principles for ontology
development. Some of these principles regard reuse through patterns and knowledge (concepts and
relations) from other ontology models. The method does not address how these patterns or concepts will
be integrated with the new ontology model.

TDDO (Keet and Ławrynowicz, 2016) is an axiom-driven ontology development method in which
users have three scenarios: to develop competency questions and derive axioms from them; to directly
input the axioms they know they need to add; and to use generic templates (with the same notion as
ODPs) to be instantiated with relevant domain entities. The work presents a possible ontology lifecycle
with a core idea that tests will be run in the ontology to identify if the CQs are already being answered.
When not, the ontology will be updated with new axioms and the tests will be run again to check if all
needs are covered, culminating in a TDD cycle.

FORZA (Keet et al., 2013) is actually the instantiation of a method called GENERATOR for a specific
scenario involving the DOLCE foundational ontology. This method describes three general steps that are
applied to two use case scenarios, one with reuse of foundational ontologies, and one without it. In both
cases there is already a domain ontology being built (with concepts and relations already being defined)
and relational ontologies (ontologies with defined relations and axioms that can be reused), so the reuse
comes from these pre-existing ontologies and from the foundational ontology.

All the aforementioned methods advocate reuse in some degree, being of concepts, relations, axioms,
or patterns. However, none of them explain in detail how to select and integrate pre-existing knowledge
into the ontology being built, leaving it to the ontology engineer or domain expert. In general, these
methods propose generic processes, not completely addressing some aspects from more traditional
ontology engineering methods (e.g., requirements elicitation, design, implementation) or ontology
integration activities. Reuse is also addressed in a generic way. On one hand, having a more generic
ontology engineering method can be beneficial, bringing more agility and dynamicity to the process. On
the other hand, this can leave some particularly important analysis or decisions to the ontology engineer
or domain expert.

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

2.3. Goal-Oriented Requirement Engineering

Goal-Oriented Requirement Engineering (GORE) is the approach that we propose to support
ontology reuse. A goal is a condition or state of affairs in the world that the actor (i.e., the agent who has
the goal) would like to achieve. It is expressed as an assertion in the representation language. How the
goal is to be achieved is not specified, allowing alternatives to be considered (Yu, 1995). GORE emerged
to create and study methods that approach requirements engineering from a goal-oriented perspective.
Usually, in GORE, goals are elicited and represented in terms of some sort of model, using a notation
provided by approaches such as iStar (Franch et al., 2016), KAOS (Van Lamsweerde, 2009) and Techne
(Jureta et al., 2010), among others. The incorporation of explicit goal representations in requirement
models provides a criterion for requirement completeness, i.e., the requirements can be judged as
complete if they are sufficient to achieve the goals they refine (Liu and Yu, 2004).

GORE has been successfully applied in Requirements Engineering (Van Lamsweerde, 2001) and has
also been used to enrich the requirements analysis phase of the ontology engineering process, as in
Fernandes et al. (2011) and Salamon et al. (2017).

GORE brings innovation to such process, by helping the ontology engineer understand the domain of
interest in the perspective of the involved actors. In summary, the ontology engineer must identify the
actors in the domain of interest and develop a goal model for each of them. Additionally, goal models
allow the refinement of goals into tasks that can accomplish them. Each goal model represents the actor
goals and tasks to be addressed by the ontology, providing a comprehensive view of the ontology scope.
Ultimately, the process of designing and analyzing goal models may lead to the derivation of competency
questions (Fernandes et al., 2011), which the ontology must be able to answer. These questions are well-
known in the Ontology Engineering community, being generally used to delimit the scope and as
requirements of an ontology under development. The difference here is hence given by the use of goal
analysis, which allows the ontology engineer to make clear the motivations behind competency questions.
In fact, goal analysis may also support the creation of such questions, in a way that first, stakeholders’
goals are identified and refined, later leading to the conception of a consistent set of competency
questions.

3. GO-FOR Principles

Building an ontology through reuse depends on finding suitable ontologies for being reused (Park et
al., 2011). The search and selection of ontologies to be reused should consider the alignment between
their scope and the scope of the ontology to be developed. That is, for each ontology model candidate to
be reused, it should be verified which part of it meets the requirements of the ontology being built.
Therefore, ontology reuse should be based on ontology requirements.

Considering that GORE can be used to establish ontology requirements and ontology patterns favor
reuse, we propose GO-FOR, a goal-oriented and pattern-based framework to aid ontology reuse. GO-
FOR stands for Goal-Oriented Framework for Ontology Reuse.

GO-FOR is based on four principles related to a subset of ontology design recurrent issues pointed out
in Gruber (1991), namely: (I1) Which pieces of information about terms are critical for supporting
shareability (e.g., name, textual definition, type)? (I2) How to describe the purposes of a particular
ontology? (I3) How to capture and use design rationale? (I4) How to identify correspondences between
ontologies? To address these issues, GO-FOR follows the principles (P1-P4) described below.

(P1) Standardize Terminology and Semantic Searching. This principle is related to issue I1. Keywords
and other metadata are often used to enable semantic search. However, it is difficult to say which metadata
about the ontology structures (e.g., models, patterns, concepts) is most critical to support reuse, but it is

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

easier to identify factors that can negatively influence it. One, for certain, occurs when ontology
developers give arbitrary and inexpressive names for ontology structures. Although recently this aspect
has been addressed by the community, there are still several models and vocabularies with inexpressive
names. For instance, if an ontology engineer searches for an ontology covering the e-commerce domain
using the keyword “e-commerce” to find ontologies addressing this subject, he/she may expect to find
ontology models covering aspects such as transactions, authentication, shopping and so on. However,
such search could return, among others, the Good Relations ontology (Hepp, 2008), whose description
states that the ontology provides a vocabulary to e-commerce, when, in fact, it provides a vocabulary to
specify offerings on the web, not addressing several aspects related to e-commerce (Salamon et al., 2017).
The lack of a standard to name ontology structures harms the search and retrieval of suitable ontologies
and, consequently, can compromise ontology reuse.

(P2) Apply Design Rationale. As discussed in Section 1, one of the difficulties to ontology reuse is the
obscurity of the ontologies design rationale (Gangemi & Presutti, 2009), which is directly related to issue
I3. It is important to make explicit the reasons for developing an ontology the way it was developed (e.g.,
what led the ontology engineer to include certain concepts in the ontology). In our view, addressing this
problem is a key factor for ontology reuse. Moreover, making the design rationale explicit also contributes
to solve issue I2, since a design rationale approach can support to define ontology purpose.

(P3) Solve Overlaps. When ontology models are developed from scratch, without any concern with
reuse, there is a high chance of overlaps with other ontology models. Thus, identifying and solving
overlaps between ontologies is important to avoid redundancy and increase reuse. This relates to I4, since
overlap solving involves the establishment of correspondences between ontologies.

(P4) Focus more on Patterns than Models. Ontology models can cover a large scope, covering several
requirements. In such cases, it can be hard to identify a model that meets a specific requirement desired
for reuse. Moreover, when finding the model, it is necessary to identify its fragment that meets the desired
requirement for reuse. Patterns are a better approach in these cases. They promote reuse since they
modularize ontology models in a way that is easier to find and reuse.

GO-FOR takes the four aforementioned principles into account and comprises: (i) a conceptual
architecture that contains the necessary components to GO-FOR use; (ii) a goal-oriented process that
guides ontology development considering GO-FOR architecture; and (iii) a tool that supports GO-FOR
use. In the following sections we describe the GO-FOR components.

4. GO-FOR Conceptual Architecture

The basic elements of GO-FOR are goal-oriented ontology patterns (GOOPs), which are aligned to
principle P4. In a GOOP, the goal establishes the scope addressed by the ontology fragment. Thus,
GOOPs can be reused based on the goal to which they relate. GOOPs are stored in a goal-oriented
ontology pattern repository (GOOPR). Inside the GOOPR, GOOPs relate to each other according to the
relationships between their goals. Figure 1 shows an overview of GO-FOR conceptual architecture.

In a nutshell, in order to reuse GOOPs for ontology development, the ontology engineer must start by
identifying the actors in the domain of interest and developing the goal models that describe the scope of
the ontology to be developed (as suggested in Fernandes et al. (2011)). The use of goal models to define
the ontology scope contributes to principle P2, since the design rationale is expressed by means of the
goals that guide the definition of what is to be addressed by the ontology and why. Moreover, goal models
help define the ontology purpose, which is also addressed in P2. For each goal represented in the goal
model, the ontology engineer verifies if there is a GOOP in the GOOPR related to it (i.e., if there is a
GOOP containing that goal). If this is the case, the ontology engineer can reuse the GOOP by integrating
it to the ontology model. In this case, we have development with reuse. Otherwise, the ontology engineer

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

can create a new ontology model fragment to achieve the goal. Thus, it can relate the fragment to the goal
(resulting in a GOOP) and store it in the repository for future reuse. In this case, we have development
for reuse.

Figure 1. GO-FOR architecture

The ontology engineer is who builds the goal model that guides the ontology development and, thus,
he/she is responsible for defining the ontology goals. Although a certain degree of understanding of the
goals that the ontology should achieve is required, the use of goals as a way to represent requirements has
shown that they tend to be closer to domain experts, promoting better understanding of their needs and
underlying motivation (Yu et al., 2011). This is due to the fact that goals not only focus on what should
be done but also on why, justifying and explaining the presence of requirement components which are
not necessarily comprehensible to clients (Aljahdali et al., 2011). Hence, it is probably easier to start by
identifying the goals that the ontology needs to achieve than its detailed requirements (e.g., in the form
of competency questions, which can be derived from the goals) (Fernandes et al., 2011).

Next, we discuss aspects of GO-FOR conceptual architecture elements, namely GOOPs and GOOPR.

4.1. Goal-Oriented Ontology Patterns (GOOP)

A GOOP consists of an ontology fragment wrapped by a goal. In other words, it refers to an ontology
model fragment that can be used to achieve a goal. A GOOP can be created whether using an ontology
model fragment already built (i.e., a fragment of an existing ontology can be used to achieve a goal, giving
rise to a GOOP) or building the model fragment from scratch (i.e., a model fragment is built aiming to
achieve a goal).

A GOOP is also related to the actor who has the goal contained in the GOOP. Different actors may
have the same goal and need different fragment models to achieve it. For example, a doctor and a
researcher may have both the goal “describe disease” and need different concepts to do so (e.g., a

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

researcher may need more technical details about the disease). Thus, when searching for a GOOP to be
reused, the ontology engineer can also consider the actor related to the GOOP in order to reuse the GOOP
more suitable for the ontology being developed.

Ontology design patterns and ontology models usually have arbitrary names. Contrariwise, GOOPs are
identified by their goals and following a standard terminology structure to name them (principle P1). In
the goal modeling literature, goals are usually expressed using passive voice, but there is no defined rule
about that. Thus, to make things as simple as possible, we propose to name GOOPs by using a verb (bare
infinitive) and a noun (or a noun phrase), e.g., “define course program”, “describe product offering”.
Concerning the verb, by analyzing several ontology model fragments and investigating goals that they
are able to achieve, we noticed that the goals can usually be associated with three main types of actions,
namely: classification, identification and description. Thus, we suggest a set of verbs to be used to name
a GOOP according to the type of action to which its goal refers. Classification applies when the goal is
to classify an entity (e.g., a specimen) according to a system of classification that is disposed as
taxonomies. The word classification is commonly used with this meaning whether in conceptual modeling
or ontology engineering (Partridge et al., 2018). Thus, for model fragments that are used to classify
entities we indicate the use of the verb “classify” to label the pattern. Identification occurs when the
purpose is to identify a well-known element (e.g., a chemical element of a periodic table) according to a
taxonomy or a list of values (enumeration). Here, the verbs to be used are “identify” or “determine”.
These verbs were suggested based on the concept of identity discussed in (Guizzardi et al., 2021). Finally,
description occurs when a model fragment is meant to describe an entity (i.e., an event or an object) by
representing its relationship with other entities that represent its characteristics. For example, a birth can
be described by its date, the mother and the baby that participated in that event. For description, we
suggest using “describe”, “characterize”, “define”, “specify” or “register”. The verbs proposed here are
the ones we have identified so far and, thus, is not an exhaustive list. The set of verbs can be extended in
the future by including new synonyms or even new verbs to represent other actions not addressed so far.
Table 1 summarizes the standard terminology for verbs when naming a GOOP.

Table 1. Terminology for naming GOOPs

Type of action Definition Model Structure Verbs to be used Example
Classification Classify an entity

according to a hierarchy
Taxonomy Classify Classify a specimen

Identification Identify an entity as a
well-known entity

Taxonomy or
enumeration

Identify, determine Identify blood type

Description Describe an entity
according to its
characteristics

Complex structure Describe, characterize,
define, specify, register

Describe crime

Regarding the noun, it refers to the entity to be classified, identified, or characterized. In the examples
shown in Table 1, the nouns are specimen, blood type and crime. The main guideline is to be clear about
the entity to enable the identification of synonyms, generalizations, and specializations. For instance, in
the goal “describe a water sample”, “water sample” is the noun. “Water sample” has “hydro sample” as
synonym, is generalized by “sample” and specialized by “freshwater sample”. Therefore, it is possible to
search GOOPs considering different keywords for nouns.

We propose this standard in order to soften the problem of completely arbitrary terminology discussed
in P1 and, at the same time, simplify the search for GOOPs. That is, the search for GOOPs becomes more
accurate if a controlled vocabulary is used to name them. Moreover, in the supporting tool (presented in

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Section 6) we apply semantic searching considering terms informed as parameters for the search and the
terms used to name the goals.

When considering the goals, GOOPs can relate to one another by a part of relationship. A GOOP is
part of another GOOP when the goal of the former is a decomposition of the goal of the latter. For
example, if g2 is a decomposition (i.e., subgoal) of g1, goop1 contains g1, and goop2 contains g2, then
goop2 is part of goop1. The part of relation is transitive, and the parts are not exclusive (i.e., a GOOP can
be part of several GOOPs). If different GOOPs have common parts, it means that their ontology models
overlap. The relationships between GOOPs promote principle P3, because once the relationships are
identified, they can structure the overlaps and avoid redundancy.

In order to increase reusability, a GOOP has an associated documentation, describing its concepts and
other relevant information to support understanding the ontology fragment and, thus, contribute to its
reuse.

As an example, Fig. 2 shows a fragment of a goal model and the GOOP created from the Place Names
Ontology1 to achieve the goal Describe Locality. The GOOP was created in the context of a Water Quality
Ontology, developed by using GO-FOR (Reginato et al., 2019). Note that the goal Describe Locality has
two subgoals: Describe Geographic Point and Describe Place Name. Each of them is related to an
ontology fragment (indicated by the same color used to represent the goal). The integrated two fragments
related to the goal Describe Locality form the GOOP Describe Locality.

Figure 2. GOOP related to Describe Locality.

4.2. Goal-Oriented Ontology Pattern Repository (GOOPR)

GOOPs are stored in a GOOPR, that aims at supporting the reuse of ontology fragments already built,
i.e., the GOOPs.

When developing a new ontology, the ontology engineer can search for GOOPs to be reused to address
the scope of the new ontology. He/she defines the goals to which the ontology is committed by developing
its goal models and uses the goals as a basis to search for GOOPs. This search involves comparing the
goals of the new ontology to the goals of GOOPs stored in the GOOPR, to identify matchings between
them (i.e., to find GOOPs that meet the goals).

Suppose that an ontology engineer has built the goal model shown in Fig. 32 for an ontology about the
Web Product Offering domain. In the goal model a Provider (an actor) wants to Describe Web Product
Offering. This goal is decomposed into Describe Product and Describe Offering Conditions. The latter,
in turn, is decomposed into Specify Payment Methods, Specify Shipment Methods and Specify Coverage.

1 http://www.linked.data.gov.au/def/placenames/
2 The goal model was produced using iStar (Franch et al., 2016) using the piStar tool (Pimentel & Castro, 2018).

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Figure 3. Goal model example.

In a bottom-up approach, the ontology engineer can search for GOOPs to achieve the ultimate goals

(e.g., Specify Payment Methods) and the achievement of the composed goals is obtained by integrating
GOOPs related to the goals that form them. The ontology engineer can also adopt a top-down approach
and search for GOOPs to achieve goals composed by others. He/she can explore goal decomposition to
select the GOOPs for reuse. For example, if the ontology engineer searches for a GOOP related to
Describe Offering Conditions, he/she can compare the goal decomposition in the GOOP returned in the
search with the goal decomposition in the goal model to verify coverage. If the returned GOOP is related
to Describe Offering Conditions, but it has only Specify Payment Methods and Specify Shipment Methods
as subgoals, the ontology engineer can search for another GOOP with larger coverage, can search for
another GOOP to complement the previous one by covering Specify Coverage, or can decide to reuse the
previous GOOP and develop the missing fragment.

By exploring the goals structure, the ontology engineer can also identify parts of the GOOPs that can
be discarded. For example, if the GOOP returned to achieve Describe Offering Conditions also had
Describe Offering Validity as subgoal and the ontology engineer was not interested in this goal, he/she
would not reuse the part of the GOOP (which is a GOOP itself) related to this goal. Finally, when
searching and selecting GOOPs, the ontology engineer must also take the actor related to the GOOP into
account, because, as we said before, different actors can have the same goal but need different ontology
models to achieve them.

5. GO-FOR Ontology Development Process

The GO-FOR ontology development process consists of a set of steps to guide ontology development
using the GO-FOR conceptual architecture. Therefore, it is a goal-oriented and pattern-oriented ontology
development process with and for reuse. It addresses the ontology development process as a whole (from
requirements elicitation to test) and covers the development of reference and operational ontologies. Here,
we focus on the process steps referring to the development of reference ontologies because the following
steps (design, implementation and test), necessary to produce an operational version of the reference
ontology, are very similar to the corresponding steps in other ontology development methods (e.g., Falbo
(2014)).

Figure 4 depicts the GO-FOR ontology development process, which consists of six phases: Ontology
Requirements Elicitation, Selection of GOOPs for Reuse, Selection of Ontologies for Reuse, Ontology
Building, Ontology Evaluation, and Extraction of GOOPs. Each phase of the process is described in the

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

following to indicate the flow between activities. In the figure, the initial node (solid circle) indicates the
beginning of the process. Control flows (arrows) represent the sequence of activities. Diamonds indicate
decision points, where a choice between possible flows must be made based on a condition. Rectangles
with rounded edges represent activities. When they have the symbol in the lower right corner, they
represent activities that are broken down into others. Rectangles with straight edges represent artifacts,
which can be inputs (when they are entering an activity) or outputs (when they are leaving an activity).
The end node (non-solid circle) indicates the end of the process.

Figure 4. GO-FOR process

5.1. Ontology Requirements Elicitation

The first step to develop an ontology consists of establishing its scope and capturing its requirements.
A common way to define the ontology’s scope is by describing its requirements as competency questions
that define which questions the ontology is supposed to answer, by navigating through its concepts and
relations. Competency questions can thus be used as the basis for scope evaluation (Falbo, 2014).
However, although competency questions are effective to represent ontology’s scope, they are not enough
to provide the design rationale behind the ontology (i.e., reason and motivation to develop an ontology).
In summary, it is hard to grasp from where the competency questions come. In GO-FOR, GORE helps in
this matter. Goals provide a richer context for understanding and interpreting requirements, because they
relate at a higher level to the business or application domain (Yu et al., 2011). Thus, it is easier and more
accessible for stakeholders to address goals rather than competency questions. Ontology Requirements
Elicitation consists of three activities:

(i) Goal Modeling: The ontology engineer must define the ontology scope by means of goal models.
Thus, he/she must identify the main actors in the domain of interest and develop a goal model for each of
them. Each goal model represents the actor goals to be addressed by the ontology, providing a
comprehensive view of the ontology scope. For example, in Section 4.2, Fig. 3 illustrates the goal model
related to the described Web Product Offering domain. Currently, the goals are expressed in natural
language by humans, taking into account the terminology suggested in Section 4.1. Goals can be defined

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

at several degrees of granularity, from broader to narrower goals. Broader goals usually hide narrower
goals, so they can be decomposed into these more specific goals, forming a goal tree where goals are
connected to each other by AND or OR decomposition.

In order to specify the ontology requirements, the goal models must be refined until they provide
enough understanding of the ontology scope by the ontology engineer. Using a goal model to represent
ontology scope, we can make explicit the rationale behind the ontology development. Once the ontology
engineer has established the ontology scope, he/she must define the ontology purpose and intended use.

(ii) Competency Questions Elicitation: To detail the ontology’s scope, the ontology engineer must
derive competency questions from the goal models, and such questions will be further used as a basis to
aid the development of the ontology’s conceptual model. Considering the example of Fig. 4, we can take
the goal Specify Shipment Methods and derive the following CQs: What are the shipment methods? What
is the price of a shipment method?. These competency questions are then used to indicate concepts that
must be addressed by the ontology (e.g., Shipment Method and Shipment Method Price). Thus, the goals
indicate the motivation for the ontology engineer to include those concepts in the ontology, making the
design rationale behind the ontology clearer.

(iii) Ontology Modularization: By analyzing the produced goal models and the competency questions,
the ontology engineer has an idea of the size of the domain (or its portion) the ontology deals with. If the
domain of interest is large or complex, he/she should modularize it considering independence, cohesion
and size criteria (Falbo, 2014). In addition, goal models can help, enabling to modularize the ontology
based on actors (e.g., one module for each actor of the domain), groups of actors (e.g., one module for
group of actors that have dependencies among them), goals (e.g., one module for each main goal) or
groups of goals (e.g., one module for a given goal decomposition). Modularization can be reviewed or
refined in the Ontology Building phase.

5.2. Selection of GOOPs for Reuse

Once the ontology scope is established, the ontology engineer can search the GOOPR aiming to select
GOOPs to be reused. This phase comprises three activities:

(i) Identification of Candidate GOOPs for Reuse: Based on the ontology scope, the ontology engineer
must search for GOOPs to cover it. The search for GOOPs is based on the goals of the ontology being
developed and retrieves GOOPs that meet such goals.

When searching for GOOPs based on the goals of the ontology being developed, the ontology engineer
can explore the goal model structure to analyze the candidate GOOPs. That is, considering goals
decomposition, he/she can analyze the coverage degree of a candidate GOOP in relation to the subgoals
of the goal model. If there are subgoals not covered, the ontology engineer can decide to search for other
candidate GOOPs to meet them or to reuse the GOOP and add new concepts and relationships in the
ontology model. The competency questions can also help to evaluate the coverage degree of GOOPs by
indicating information the GOOP must provide to properly answer the questions and cover the ontology
scope.

(ii) Selection of GOOPs for Reuse: The ontology engineer must select among the candidate GOOPs
the ones to be reused. The GOOPs that meet the reuse needs, that is, those that best suit the scope to be
addressed and are feasible to be integrated to the ontology being developed, should be selected. Criteria
such as completeness, understandability, consistency and availability (ISO/IEC 25012, 2008) should be
considered.

(iii) Enrichment of GOOPs: The ontology engineer must evaluate if the selected GOOPs will be reused
as they are or if reengineering is necessary. If the GOOPs are not in the desired degree of formalism or
do not meet the same ontological commitments expected in the ontology being developed, an ontological
analysis should be carried out, so that the ontology models to be integrated are anchored in the same

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

foundational concepts. Reengineering the GOOPs at the light of the same foundational ontology
contributes to a proper integration in the next phase.

5.3. Selection of Ontologies for Reuse

If the GOOPs selected in the previous phase are not enough to cover the ontology scope, the ontology
engineer can search (outside the GOOPR) for ontologies (or ontology fragments) to be reused. This phase
comprises three activities analogous to the ones of the previous phase: (i) Identification of Candidate
Ontologies for Reuse, when the ontology engineer identifies ontologies (or ontology fragments) that can
be able to meet the goals not covered (or partially covered) by the selected GOOPs; (ii) Selection of
Ontologies for Reuse, when the ontology engineer selects among the candidate ontologies (or ontology
fragments) the ones to be reused; and (iii) Enrichment of Ontologies for Reuse, when the selected
ontologies (or ontology fragments) are reengineered, if necessary.

5.4. Ontology Building

This phase aims to create the ontology model that meets the defined requirements and goals. In other
words, in this phase the ontology conceptual model is built by integrating selected GOOPs and adding
other necessary concepts and relations. It comprises three activities:

(i) Identification of Relations between GOOPs: The GOOPs selected for reuse may not be related to
each other in the GOOPR and, still, relate to each other in some way. For example, a concept (e.g.,
Department) from a GOOP can be part of a concept (e.g., University) from another GOOP. Thus, the
semantic relations between the ontology model fragments must be identified. Examples of possible
relations between concepts from different GOOPs are (Ruy, 2017; Safyan et al., 2008): equivalent, part
of, intersection, specialization of, generalization of, and acts as. In order to properly establish the relations,
the ontology engineer should analyze the concepts description contained in the GOOP documentation.

(ii) Application of Integration Operations: Consists of performing operations to integrate the GOOPs
considering the relations identified in the previous activity. Examples of integration operations are:
unification, specialization, generalization, aggregation/composition, intersection and role representation.
The operation to be applied depends on the semantic relation between the involved elements. For
example, when two concepts from two different GOOPs are equivalent, they must be unified, i.e.,
represented only once in the ontology model. If a concept is part of another concept, both concepts must
be represented in the ontology model and related to each other by a part-whole relation (aggregation or
composition). If a concept represents a role that can be played by another concept, the concept that
represents the role must be related to the other by a specialization relation, meaning that the specialized
concept represents a role of the general concept.

(iii) Development of the Reference Ontology: The ontology engineer must develop the ontology model
by integrating GOOPs (see previous activity) and also adding new concepts, properties, relationships, and
axioms so that the resulting ontology model meets the established requirements and goals. The result is
the Reference Ontology, which comprises the conceptual model containing the ontology concepts and
relations, plus the concept’s definitions and the axioms necessary to specify the constraints.

5.5. Ontology Evaluation

This phase aims to ensure the quality of the produced ontology. Therefore, the ontology is evaluated,
and the necessary improvements or corrections are identified. In case adjustments are needed, the
ontology engineer must return to the activity where adjustments can be made. For example, if axioms

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

must be reviewed, the ontology engineer must return to the activity Development of the Reference
Ontology. Ontology evaluation involves two activities:

(i) Structural Evaluation: The ontology engineer must evaluate the ontology aiming at ensuring that
there is no unwanted redundancy in the structuring of knowledge or inconsistencies in the model (Leung
et al., 2011). Searching for anti-patterns is one way to find inconsistencies in the ontology structure
(Guizzardi, 2014).

(ii) Semantic Evaluation: Focuses on evaluating the ontology in terms of its adequacy to the defined
requirements and the users' satisfaction. It includes Verification and Validation. In Verification, the
ontology engineer must evaluate if the ontology elements (concepts, relations, properties and axioms) are
the ones necessary and sufficient to answer the competency questions and achieve the goals defined
during Ontology Requirements Elicitation (Falbo, 2014). Concerning goals achievement, in cases where
a goal is decomposed into others, by achieving the more specific goals (considering AND/OR relations
among them), the more generic goal is also achieved. In Validation, the ontology engineer aims to ensure
that the ontology fulfills its specific purpose (Falbo, 2014). Ontology users and domain experts must be
involved in ontology validation. Ontology users must evaluate if the ontology is suitable for its intended
uses. Domain experts should assess whether the conceptualization provided by the ontology reflects the
portion of the real world represented in it. Validation can also be accomplished by instantiating the
ontology concepts using real-world elements.

5.6. Extraction of GOOPs

The first five phases of the GO-FOR ontology development process address development with reuse,
since they consider the reuse of existing GOOPs and ontologies to develop new ontologies. This last
phase of the process aims at ensuring ontology development for reuse, generating new GOOPs and
making them available at the repository (GOOPR). It involves two activities:

(i) GOOPs Identification: The ontology model resulting from the previous phase satisfies the goals
established in the ontology goal models. In this activity, the ontology engineer must identify, from the
ontology model, ontology fragments related to the goals represented in the goal models. Each fragment
able to meet a goal (except the model fragments referring to reused GOOPs) should give rise to a new
GOOP. Composition relation between GOOPs due to goals decomposition must be identified. For each
identified GOOP, the ontology engineer must record its conceptual model, documentation (e.g., concepts
description, axioms) and associated goal.

(ii) Storage of GOOPs: At last, the ontology engineer must store the created GOOPs in the GOOPR,
making them available for future reuse.

The GOOPs created in this phase are later (during the implementation phase of the process – not
addressed here) implemented in OWL and their operational versions are also made available in the
GOOPR.

In summary, by performing GO-FOR ontology development process, a virtuous cycle of ontology
development for reuse and with reuse emerges: the extraction of GOOPs from developed ontologies
enables to populate the repository (GOOPR) promoting development for reuse. On the other hand, goal-
oriented search to select GOOPs for reuse supports the development with reuse. Figure 5 illustrates the
virtuous cycle of ontology development for reuse and with reuse that emerges from GO-FOR use.

When developing ontologies using the GO-FOR ontology development process, ontology engineers
relate ontology fragments to goals and store them as GOOPs in the repository (GOOPR). In Fig. 5,
ontology fragments G1, G2 and G3 associated to the respective goals represent GOOPs extracted from
the Ontology A and its goal model. As it can be noticed, G1 is related to Goal 1, G2 is related to Goal 1.2
and G3 is related to Goal 1.1. Goals 1.1 and 1.2 are subgoals of Goal 1. Thus, GOOPs G2 and G3 are part
of G1. Once GOOPs are available in the GOOPR, they can be retrieved based on their goals and the

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

ontology fragments can be integrated into ontologies being developed. In the figure, the goal model of
the ontology being developed (Goal Model B) contains the Goal 1.2. Thus, the Ontology Engineer B
retrieves the GOOP related to that goal and reuses the ontology fragment G2 by integrating it into the
Ontology B.

Figure 5. GO-FOR supporting development for and with reuse

6. GOOP-Hub: The GO-FOR Supporting Tool

Aiming to provide computational support to GO-FOR and promote its use, we have developed the
GOOP-Hub3, which enables the creation of and searching for GOOPs. GOOP-Hub consists of an interface
that allows ontology engineers to record and retrieve GOOPs and a repository that stores GOOPs (i.e., a
GOOPR).

Considering that most of the ontology fragments available on the web use the Web Ontology Language
(OWL), we have implemented the GOOP-Hub metamodel in this language. The main advantage of this
choice is that it is possible to make SPARQL queries using the GOOP-Hub metamodel structure as part
of the query. In this way, we can take advantage of the language to make inferences based on the meta-
model and provide better search results. Moreover, since the metamodel uses OWL, a widespread
language used in the Semantic Web, it can be referred even outside the GOOP-Hub infrastructure. Figure
6 presents the core concepts of the GOOP-Hub metamodel.

3 GOOP-Hub code is available at https://github.com/nemo-ufes/goophub. The tool can be accessed at

http://dev.nemo.inf.ufes.br/goophub/. A short user guide is available at https://nemo.inf.ufes.br/wp-
content/uploads/GOFOR/GoopHub_User_Guide_v1.0.pdf.

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Figure 6. The GOOP-Hub metamodel

The GOOP-Hub metamodel comprises elements of the OWL metamodel alongside goal modeling
constructs. A GOOP is composed of OWL classes, object properties and data properties. These three
OWL constructs are the main elements used to represent a model fragment in terms of its structure. The
hierarchies must be represented by associating classes with its subclasses and domain and range of Object
Properties can be used to describe to which classes an object property is associated. Since GOOPs are
thought to be generic structures to be reused, we have just used the most basic OWL constructs of OWL
LITE. For this reason, OWL DL constructs often used for reasoning purposes are ignored (e.g.,
equivalence and logical operators). Besides the OWL structure, a GOOP also involves a Goal that can be
Atomic or Complex. A Complex Goal is composed of other Goals either by AND or OR decomposition.
An AND decomposition is used when all its subgoals must be satisfied for its achievement. An OR
decomposition occurs when only one needs to be satisfied. Goals are related to the Actors who want to
achieve them. Actors are also related to GOOPs, indicating which model fragment is necessary for an
actor to achieve a certain goal.

To add a GOOP into the repository the user informs the goal(s) and actor(s) to which the GOOP relates
and uploads the ontology fragment in OWL format, alongside with a picture depicting the conceptual
model of the ontology fragment. The application performs the conversion to the meta-model, so that the
relationships between GOOPs are established according to the relationships between goals. To store the
GOOPs, we use Stardog4, a knowledge database that stores data in triple format. We chose Stardog
because its Java API is documented with functional examples and also because it offers tools for data
comparison using AI (Similarity Search), as well as textual search based on Apache Lucene5.

As previously said, different actors may need different ontology fragments to achieve the same goal.
In the metamodel shown in Figure 6, the relationships “achieves goal of” between GOOP and Actor,
“has” between Actor and Goal, and “is used to achieve” between GOOP and Goal mean that a single

4 https://www.stardog.com/
⁵ http://lucene.apache.org/

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

GOOP can achieve the goal of one or many Actors and that an Actor may need more than one GOOP to
achieve a certain Goal. Moreover, the following constraint must be considered: if a GOOP gp is used to
achieve a Goal g and achieves a goal of an Actor a, then g must be a goal of a.

Currently, there are around 40 GOOPs stored in the GOOP-Hub, covering domains such as
measurement, software process, time, biology, chemistry, specimen, scientific activities, patient and
locality. They were stored during the development of ontologies built with GO-FOR. Some of them came
from works performed in our research group (e.g., (Barcellos et al., 2014), (Ruy et al., 2015) and (Ruy et
al., 2016)), others came from external sources (e.g., Interlinking Ontology for Biological Concepts6 and
Place Names Ontology7) and others were created from scratch during the development of new ontologies.
As we explained in Section 4.1, a GOOP can be created whether using an existing ontology model
fragment or building the model fragment from scratch. In the first case, ontologies available in catalogs,
libraries, sites, etc. can be used. However, it is important to notice that GOOPs cannot be randomly
created. A GOOP is an ontology pattern aimed to achieve a goal, so it can only be created when the goal
is known. The random transformation of ontology fragments retrieved from repositories into GOOPs
would allow creating artificial goals that could hamper the benefits of using GORE to help ontology
reuse. Thus, in order to create a GOOP from existing ontologies, when developing a new ontology, the
ontology engineer should identify an ontology fragment that meets his/her goal, reuse it in the new
ontology and then create the GOOP by relating the ontology fragment to his/her goal (because once the
fragment was used to achieve the ontology engineer goal, it can be related to that goal).

The goal-based search for GOOPs in the GOOP-Hub is made by using textual inputs referring to the
ontology goals (e.g., Specify event interval or Describe offering item). In our implementation, we apply
Apache Lucene, which is a java full-text search engine in which, given a search query, the API returns a
set of documents (in our case, goals) sorted using a score system such that the documents (goals) most
similar to the query are displayed first. The association between a goal and a GOOP is persisted as an
OWL relation since the goal and the GOOP are defined as OWL resources. Thus, it is possible to make
the goal-based search and find GOOPs by using the metamodel proposed as an OWL structure.

In addition to the textual searching, ontology engineers count with a SPARQL Endpoint, where they
can perform complex queries involving all the elements of the metamodel and their instances. For
example, the ontology engineer can search for a GOOP with the goal Describe Location filtering those
that have the concept City. As result of the search, the ontology engineer receives a list of GOOPs that
meet the parameters. The GOOPs can be visualized (by means of the pictures that depict the conceptual
model) and downloaded in OWL format. Figures 7 and 8 illustrate some screens of GOOP-Hub. Figure
7 shows the initial page of GOOP-Hub and presents the search page, where the user searches for GOOPs
based on the goal name (or part of it). Figure 8 presents the GOOP details page, which is reached when
the user clicks the button “Show” of a GOOP returned in the search. The page shows the GOOP
description, its OWL representation and a picture illustrating its conceptual model. When the ontology
engineer selects a GOOP for reuse, he/she can download the GOOP as an OWL file, which can be
imported by ontology development supporting tools.

6 https://bioportal.bioontology.org/ontologies/IOBC
7 https://raw.githack.com/GeoscienceAustralia/Placenames-Ontology/master/placenames.html

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Figure 7. GOOP-Hub initial page and search page

Figure 8. Page detailing the returned GOOP

7. Applying GO-FOR

We have applied GO-FOR in some scenarios in order to evaluate whether it is (i) applicable in real
ontology engineering scenarios and (ii) able to assist the ontology engineer to reuse existing ontologies.
Moreover, we sought to identify difficulties faced when using GO-FOR. In this section we present some
results of GO-FOR use in a research project concerning chronic diseases prevention in Brazil. Brazilian
health care data is scattered throughout a number of systems (Unified Health System, private health
insurances, private hospitals and clinics). Therefore, it is hard to obtain information on patients’ tests and
their condition, mostly about chronic diseases such as diabetes and hypertension, which makes it difficult
for the government to take direct action to help the population. The referred research project aims to
provide an ontology-based solution to integrate health care data and make them available to support

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

decision making. Hence, an ontology has been used to enable data interoperability. The ontology has been
developed by using GO-FOR. Next, we explore a fragment of the ontology to demonstrate GO-FOR use.

As prescribed by the GO-FOR process, the ontology scope was defined by means of goal models. An
important actor of the domain of interest is the Laboratory Technician, who is responsible for collecting
samples, describing information about patients, obtaining and analyzing data, among others. Figure 9
shows a fragment of the goal model related to the Laboratory Technician, focusing on the goal Describe
Patient Laboratory Test. The colors in the figure will be further used to identify different GOOPs.
Achieving the Describe Patient Laboratory Test goal is necessary to verify the patient health condition
by analyzing chemical entities properties of collected samples. In the model depicted in Figure 9, such
main goal is AND-decomposed in three subgoals, namely: Describe Patient, Describe Biological
Sampling and Describe Sample Measurement. It means that in order to Describe Patient Laboratory Test,
these three goals must be achieved. Describe Biological Sampling, in turn, has an AND decomposition
with Describe Sampling Date/Hour, Identify Biological Sample Material and Identify Sampling
Procedure. Describe Sample Measurement has an AND decomposition with Identify Chemical Property,
Describe Measure, Describe Measurement, Describe Measurement Analysis. Describe Measure has an
AND decomposition with Define Used Measure and Identify Measure Unit. Describe Measurement has
an AND decomposition with Define Measurement Procedure, Define Measurement Act and Describe
Measured Value. Describe Measurement Analysis has an AND decomposition with Define Measurement
Analysis Act, Define Reference Values, Define Interpretation and Define Analysis Result. At last,
Describe Patient has an AND decomposition with Describe Patient Information and other goals that are
not shown here due to scope limitation.

Once the goal model was defined, the next step was to derive the competency questions to detail the
ontology scope. For example, some of the competency questions derived from the model depicted in Fig.
9 were: What was the result of a measurement analysis that analyzed values measured in a biological
sample?, Which are the types of procedures to measure samples aiming at patient laboratory test?, What
was the measure unit used to express the patient's measured chemical property?, What was the chemical
property measured in a measurement?. The competency questions helped to detail the ontology scope
and were particularly useful to evaluate the ontology by indicating which questions the resulting ontology
should be able to answer. Based on the goal models, we defined the ontology modularization. For
example, taking the goals decomposition shown in Fig. 9 into account, we defined the following modules:
Patient, Sampling, and Measurement.

Considering the goal model, we searched the GOOP-Hub looking for GOOPs that meet the established
goals. We adopted a top-down approach, first looking for GOOPs related to subgoals of Describe Patient
Laboratory Test. Since we did not find any GOOP covering those subgoals, we looked for GOOPs related
to their subgoals, and so on. We found GOOPs related to the following goals: Describe Sampling
Date/Hour, Identify Sampling Procedure, Describe Measurement, Describe Measure, Define
Measurement Analysis Act and Define Analysis Result.

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Figure 9. Fragment of the goal model related to Laboratory Technician

Figure 10 presents the GOOP we selected to meet the Describe Sampling Date/Hour goal. That GOOP

was extracted from the Time Ontology8 and it had been stored in GOOP-Hub during the development of
a Crime Ontology (Santos et al., 2018), built in the context of another project. In the figure, Temporal
Position is the most generic concept that has properties to indicate the temporal system used. Time
Position has properties to alternatively describe a temporal position using a number (i.e., a temporal
coordinate) or a nominal value (e.g., geological time period, dynastic name, archeological era). General
Date Time Description has a set of properties to specify the date and time using calendar elements and
clock. Finally, Date Time Description transforms the temporal reference system to the Gregorian calendar
(Reginato et al., 2019). In Figure 10 and in the other models shown in this section, the concepts’ attributes
were omitted for simplification reasons. Moreover, the colors used in the model’s concepts indicate the
goals to which the model is related, according to the colors used in Fig. 9.

Figure 11 depicts an integrated view of the GOOPs we selected to meet the goals Identify Sampling
Procedure, Describe Measurement, Describe Measure, Define Measurement Analysis Act and Define
Analysis Result. These GOOPs were stored in the GOOP-Hub during the development of a Measurement
Ontology (Santos et al., 2019). In the figure, each region indicates a selected GOOP. Blue region refers
to the GOOP selected to achieve Identify Sampling Procedure; pink region indicates the GOOP selected
to Describe Measure; orange region indicates the GOOP selected to Describe Measurement, and yellow
region indicates the GOOP selected to achieve Measurement Analysis Act and Define Analysis Result.

A Measurable Entity is anything that can be measured, such as a person. Measurable Entity is instance
of Measurable Entity Type (e.g., Person). Measurable Entity Types are characterized by at least one
Measurable Element (e.g., Person can be characterized by weight, height, blood pressure). Measures are
used to quantify Measurable Elements and to characterize Measurable Entity Types. For instance, the
measure weight in kilograms can be used to quantify the measurable element weight of measurable
entities of the type Person. Measures have Scales composed of all possible values (Scale Value) to be
associated by the Measure to a Measurable Element. Measures can be expressed in Measure Units (e.g.,
mg/dL, kilograms).

8 http://www.w3.org/TR/owl-time/

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Figure 10. GOOP related to “Describe Sampling Date/Hour”

Measurement is an event that measures a Measurable Element of a Measurable Entity by applying a
Measure and adopting a Measurement Procedure (which describes the steps to be carried out to collect
data for the measure). The result is a Measured Value. For instance, the measurement of John’s cholesterol
by applying the measure cholesterol HDL in mg/dL and adopting the Bichromatic Enzymatic
measurement procedure could determine the measured value 51 mg/dL.

 Sampling is the act of collecting Samples by adopting a Sample Procedure. A Sample is a proxy for a
Measurable Entity, said a Sample Represented Measurable Entity. In other words, a Sample represents a
Sample Represented Measurable Entity, which is the Measurable Entity characterized by the Sample. For
example, a blood sample represents a person, since by measuring the blood sample it is possible to
characterize that person.

Measurement Analysis is the act of analyzing Measured Values to produce an Analysis Result that
characterizes the measured Measurable Entity. For example, the analysis of the measured value to John’s
cholesterol indicates that his cholesterol level is acceptable.

After selecting the GOOPs, we used the competency questions related to the respective goals to verify
if the GOOPs were enough to meet the goals or if additional concepts were necessary. For example,
concerning the goal Describe Measurement Procedure, we noticed that the selected GOOP did not
provide information to answer the following competency question: Which are the types of procedures to
measure samples aiming at patient laboratory test?. Thus, we searched outside GOOP-Hub for ontology
fragments to complement the selected GOOPs.

Figure 12 shows the selected fragment to address the aforementioned competency question. It was
obtained from the Interlinking Ontology for Biological Concepts (IOBC)9 and needed to be enriched,
because its concepts were presented in a tree visualization and considered as being at the same
conceptualization level.

We also searched outside GOOP-Hub for ontology fragments to meet the goals not covered by the
selected GOOPs. For example, to meet the goal Identify Chemical Property, we selected the fragment
from the Chebi Ontology10 depicted in Fig. 14.

In the model, Chemical Entity is a physical entity of interest in chemistry, including molecular entities,
parts thereof, and chemical substances. A Chemical Substance is a portion of matter of constant
composition, composed of molecular entities of the same type or of different types. A Molecular Entity
is any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex,
conformer etc., identifiable as a separately distinguishable entity. A Triglyceride is any glyceride resulting
from the condensation of all three hydroxy groups of glycerol with fatty acids. Hemoglobin, in turn, is
the iron-containing oxygen-transport metalloprotein in the red blood cells (erythrocytes) of almost all
vertebrates.

9 http://bioportal.bioontology.org/ontologies/IOBC
10 https://www.ebi.ac.uk/chebi/

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Figure 11. Integrated view of measurement-related GOOPs selected for reuse

Figure 12. IOBC fragment for complementing the GOOP select to achieve Describe Measurement Procedure

After selecting GOOPs and ontology fragments to be reused, we integrated them. We started by
identifying the semantic relations between concepts from different GOOPs and ontology fragments. Most
of them were relations of specialization, meaning that the concepts from the GOOPs were more generic
than the ones from the reused ontologies. In fact, we expected that because the measurement-related
GOOPs provided core concepts about measurement and sampling, while the other ontology fragments
address specifics of chemical entities examination. When the integration operations were applied, the
more specific concepts were related to the more generic ones through specialization relations. When we
did not find correspondence between concepts from different GOOPs/ontologies, the concepts were
added to the integrated model and suitably related to the other concepts. We also added some new

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

concepts to address information needs not met by the reused GOOPs and ontologies. Finally, we made
some adjustments in concept names to ensure consistency in the terminology used in the ontology.

Figure 13. Ontology fragment selected to meet Identify Chemical Property

Figure 14 shows a fragment of the final ontology. For the sake of simplification, we do not present all
the concepts related to the goal model presented in Fig. 9. In Figure 14, the concept color indicates the
goal to which it relates. Therefore, concepts plus the goal in the same color illustrate fragments of the
GOOPs reused to build the ontology. However, it is important to notice that, as shown in Fig. 11, some
concepts belong to more than one measurement-related GOOP. The concepts in grey were added to the
model to meet the ontology requirements not covered by the reused GOOPs and ontologies. Red is used
to indicate relationships created to integrate concepts from different GOOPs as well as new concepts
added in order to address the ontology scope.

Biological Sampling refers to a Sampling that produces a Biological Sample. The values measured in
a Biological Sample are so-called Biological Measured Values. These values are analyzed (during
Measurement Analysis) by comparing them to Reference Values of Medical Properties, which are well-
known reference values for a given medical property. Thus, they are values of the Scale of the Measure
used to measure the referred property (Measurable Element). Each Reference Value of Medical Property
leads to an Interpretation, which is a lexical value (e.g., “acceptable”, “desired”, “recommended”)
considered to determine the Analysis Result of a Measurement Analysis.

After building the ontology, we evaluated it through verification and validation. During verification,
we checked whether the concepts and relations defined in the ontology are able to answer the competency
questions. For each competency question (CQ), we identified the elements of the ontology which together
are able to address the question. Table 2 shows a fragment of the verification table.

Table 2. Ontology verification (fragment)
Goal Describe Biological Sample Material
Competency Question CQ14 - Which are the types of biological sample?
Concepts & relations Biological Sampling resulted in Biological Sample

Blood Sample, Swab, Tissue Section subtype of Biological
Sample

Goal Describe Measurement Analysis
Competency Question CQ13 - What is the result of a measurement analysis that analyzed

values measured in a biological sample?

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Concepts & relations Biological Measured Value was measured in Biological Sample
and is subtype of Measured Value
Biological Measured Value is compared to Reference Value of
Medical Property that denotes an Interpretation
Measurement Analysis analyzed Measured Values and produced
Analysis Result that considers Interpretation

Figure 14. Fragment of resulting ontology

During validation, we aimed to evaluate the ontology by assessing whether it is suitable for representing

real-world situations. For that, we instantiated the ontology using data extracted from the research project.
Table 3 shows a fragment of the validation table.

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Table 3. Ontology verification (fragment)
Concept Instance

Measurable Entity Type Person; Blood

Measurable Entity/ Individual X (omitted for privacy reasons); Individual X’s
Blood Sample

Sample/ Biological Sample /Blood Sample Individual X’s Blood Sample

Sample Represented Measurable Entity/Patient/Person Individual X

Sampling Procedure/Biological Sampling Procedure Procedure for Adrenal Venous Sampling

Sampling /Biological Sampling Act of extracting the blood sample from Individual X and
store it in a clinical tube

Measurable Element/ Chemical Element Hemoglobin

Measure Hemoglobin in g/dL

Measure Unit Gram per DL

Measurement Act of measuring the amount of hemoglobin in the Individual
X’s blood sample

Measurement/ Biochemical Analysis Procedure Flow Cytometry

Scale Value/Measured Value/Biological Measured Value 11,8 g/DL

Measurement Analysis Act of analyzing the measured value of hemoglobin in the
Individual X’s blood sample

Scale Values/ Reference Value of Medical Property < 12; 12 to 16; > 16

Interpretation Low; Normal; High

Analysis Result Low

Once the ontology was built and evaluated, we extracted new GOOPs to store them in the GOOP-Hub
and make them available for future reuse. For example, the fragment shown in Fig. 13 was related to the
goal Identify Chemical Property and recorded as a new GOOP. Figure 15 presents a GOOP extracted
from the resulting ontology to achieve the goal Describe Biological Sampling. The GOOP includes
concepts from other GOOPs used to build the ontology and also a new concept we added to meet the
ontology requirements.

Finally, we implemented the ontology and the GOOPs in OWL and stored them in GOOP-Hub. The
ontology has been used to integrate health care data from different sources (spreadsheets, information
systems, web sites, PDF files, etc.).

The use of GO-FOR in the case reported in this section showed that using GO-FOR in a real ontology
engineering scenario is viable. Moreover, GO-FOR helped reuse existing ontologies, contributing to the
quality of the developed model and the productivity of the ontology engineering process. By using GO-
FOR, we were able to reuse GOOPs to build most of the model. By reusing GOOPs, we obtained the core
conceptualization of our ontology and, thus, we just needed to complement it with concepts from other
ontologies and add a few concepts to address specifics of the domain of interest. In the end, we contributed
to GOOP-Hub by adding new GOOPs to it, which are available to be reused in the development of other
ontologies. As for difficulties we faced when using GO-FOR, we highlight the lack of support to integrate
the selected GOOPs and build the ontology integrated model.

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Figure 15. Extracted GOOP

8. Related Works

The use of goal modeling in Ontology Engineering is recent. Therefore, we did not find any work
exploring the use of such approach to support reuse. Hence, in this section we make some discussions
comparing some works cited in Section 2 to GO-FOR.

First, we will consider the cited works devoted to reuse: Ruy et al. (2015), Gangemi and Presutti (2009),
and Caldarola and Rinaldi (2016). Our work has some similarities and also differences when compared
to them. Regarding similarities, we can highlight the fact that all proposals help define and store ontology
patterns or ontologies and provide a string-based search mechanism to retrieve them. As for differences,
we point out the way the design rationale is expressed, the basis for the searches and the fact that none of
the cited works define a process to create or use the patterns.

In the work presented by Ruy et al. (2015), the authors argue that when a foundational pattern is reused,
its design rationale is carried to the domain pattern. Thus, when the domain pattern is reused, the
foundational and the domain design rationales are carried to the new ontology. However, the design
rationale is not made explicit in the patterns’ definition, thus it is not clear how the design rationale is
expressed to the ontology engineer. In the work presented by Gangemi and Presutti (2009), the design
rationale comes from information associated with the patterns. However, it is not clear how reuse can be
conducted based on this information. In the work presented by Caldarola and Rinaldi (2016), design
rationale comes from domain experts that help the ontology engineers understand the domain of interest.
However, information about design rationale is not recorded neither used as a basis for the searches,
which are made in repositories in general. Regarding computational assistance, Gangemi and Presutti
(2009) use a web portal to access the patterns repository; Ruy et al. (2015) use an ontology framework
defined in Guerson et al. (2015) to support the definition of pattern libraries in OntoUML (Guizzardi,
2005). Caldarola and Rinaldi (2016) use tools to retrieve from broad search engines ontologies addressing
the domain of interest.

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Since none of the aforementioned works define a process to support reuse in the context of the ontology
development process, we analyzed the GO-FOR ontology development process considering the works by
Leung et al. (2011), Cuenca et al. (2017), Pinto and Martins (2001), Keet et al. (2013), Blomqvist et al.
(2016), De Nicola and Missikoff (2016), Peroni (2017), and Keet and Ławrynowicz (2016) (here so-
called, respectively, LLFT, CLC, PiM, FORZA, XD, Upon Lite, SAMOD, and TDDO).

Again, there are similarities and differences between these works and ours. Concerning similarities,
the first five proposals define activities to reuse existing ontologies (or ontology fragments) when
developing a new ontology and the last four are inspired by methods or practices from software
engineering. As for differences, we highlight coverage to the ontology development process, search for
ontologies (or ontology fragments) for reuse, the way requirements are elicited and computational
assistance.

Concerning process coverage, like GO-FOR process, XD, LLFT, and CLC cover the ontology
development process as a whole, also adding reuse activities to it. PiM, in turn, covers only activities
related to the reuse process itself (particularly integration), without taking general ontology development
activities (e.g., requirements elicitation) into account. Upon Lite and TDDO cover the development
process in general, but they do not add detailed guidelines for reuse. SAMOD provides three general steps
for ontology engineering that could be executed iteratively but it does not mention reuse-specific activities
albeit having a principle for pattern use. FORZA provides general steps for ontology engineering and has
principles for reuse. Only GO-FOR addresses development (thus prescribing specific activities) for reuse.

As for the search of ontologies for reuse, only GO-FOR suggests the use of goal models to support
search activities. Moreover, besides GO-FOR, none of the proposals consider the need of enriching the
selected ontologies before reuse. XD advocates the search of ODPs in repositories, but the search is not
automated in a tool. CLC, Upon Lite, SAMOD and TDDO do not address search of ontologies for reuse.
LLFT and PiM suggest searching in ontology libraries and semantic search engines. FORZA leaves it up
to the ontology engineer to select the classes they want to use, and suggests the alignment between these
classes and a foundational ontology (e.g., DOLCE (Masolo et al., 2003)). This alignment is different from
enriching ontologies before the reuse, as addressed in GO-FOR, because in FORZA, it consists of aligning
the already defined classes/concepts to the foundational ontology, instead of grounding on a foundational
ontology the ontologies selected for reuse.

It is also important to mention the reuse selection criteria. On one hand, XD and TDDO consider
competency questions as the main decision criteria. Analogously, CLC evaluates candidate ontologies
considering the defined ontology requirements. On the other hand, FORZA preconizes the use of patterns
extracted from foundational ontologies, specifically DOLCE. PiM describes a set of questions that help
the ontology engineer to evaluate the candidate ontologies for selection. Upon Lite and SAMOD do not
address ontology selection criteria. LLFT makes a comparison between key terms defined from
competency questions and scenarios and the concepts from the candidate ontologies. The main difference
of GO-FOR regarding this aspect is that although competency questions are still applied, goals are added
as the main selection criteria, helping the ontology engineer to recognize common goals between the
ontology-to-be and the found patterns.

With respect to requirements elicitation, XD uses stories and competency questions to define the
ontology requirements, deriving the questions from the stories. It also uses the questions to derive
contextual statements and reasoning requirements. LLFT uses scenarios and competency questions, while
CLC defines functional and non-functional requirements. PiM and FORZA do not address requirements
elicitation. SAMOD uses the so-called motivating scenarios and derives competency questions from
them. TDDO advocates for the elicitation of competency questions and axioms, and the questions would
be used to derive some ontology axioms as well. Upon Lite goes straight to the creation of a domain-
specific terminology, not addressing requirements elicitation. Similar to LLFT, GO-FOR defines

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

requirements by means of competency questions. However, GO-FOR uses goal models to derive the
competency questions and to make explicit motivations for building the ontology.

Last, with respect to computational assistance, only CLC and LLFT present a system to aid the
proposed processes. In LLFT there is a key-term system to identify equivalent concepts in candidate
ontologies using string-based and linguistic source matching techniques. CLC uses an ontology mapper
tool to semi-automatically select the concepts from the reused ontologies and detect duplicates among
them. XD has embraced Protégé as its platform using a plug-in for support. FORZA only uses a reasoner
that is implemented in a tool to compute properties of part-whole relations. TDDO provides a Protégé
plugin to run the tests on the developed ontology. SAMOD does not provide a computational tool, relying
on commonly used tools for OWL ontology engineering. Upon Lite suggests the use of spreadsheets for
gathering resources for the ontology engineering and the use of plugins to transform the spreadsheets into
OWL ontologies. PiM does not mention the use of tools in the methodology. Similar to XD and LLFT,
GO-FOR presents a tool (GOOP-Hub) to aid the ontology development process. Different from these
works, GOOP-Hub supports the search and storage of ontology fragments related to goals. In GOOP-
Hub, the search for candidate GOOPs considers a standard terminology for goals. Moreover, advanced
search is provided through a SPARQL end point.

Table 4 summarizes the main aspects analyzed in the works compared to GO-FOR.

Table 4. Summary of aspects analyzed in the approaches
Approach Coverage Design

Rationale
Search and
Selection

Requirements
Elicitation

Computational
Assistance

Ruy et al.
(2015)

Patterns definition and
storage

Not explicit Not addressed Not addressed Ontology
framework to define

pattern libraries
Gangemi and

Presutti (2009)
Patterns definition and

storage
Not explicit

Search for
patterns in
repositories

Not addressed Web portal to access
the patterns
repository

Caldarola and
Rinaldi (2016)

Patterns definition and
storage

Not explicit Not addressed Not addressed Tools to retrieve
ontologies from

broad search engines
Blomqvist et

al. (2016)
Ontology development

process
Not explicit Search for

patterns in
repositories

Stories and
competency
questions to

Protégé plugin

Leung et al.
(2011)

Integration-based
ontology development

process

Not explicit Addressed as
activities of the

ontology
development

process

Scenarios and
competency

questions

System to identify
equivalent concepts

in candidate
ontologies

Cuenca et al.
(2017)

Ontology network
development process

Not explicit Addressed as
activities of the

ontology
development

process

Functional and
non-functional
requirements

Tool to select
concepts from

reused ontologies

Pinto and
Martins (2001)

Ontology integration
process

Not explicit Addressed as
activities of the

ontology
integration

process

Not addressed None

Keet et al.
(2013)

General steps for
ontology development
with reuse principles

Not explicit Not addressed Not addressed Reasoner to
compute properties

of relations

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Keet and
Ławrynowicz

(2016)

General steps for
ontology development

Not explicit Not addressed Competency
questions

Protégé plugin

De Nicola and
Missikoff

(2016)

General steps for
ontology development

Not explicit Not addressed Not addressed Spreadsheets and
plugins to transform

them into OWL
ontology

Peroni (2017) General steps for
ontology development
with reuse principles

Not explicit Not addressed Motivating
scenarios and
competency

questions

Commonly used
tools for OWL

ontology
engineering

GO-FOR Ontology development
process (development

with reuse and for
reuse) and patterns

definition and storage

Made explicit
by using
goals and

goal models

Use of goals to
support search
and selection

Goal models and
competency

questions

Tool for pattern
definition, storage,

and search

In summary, in GO-FOR, design rationale is expressed by means of goals that reveal the reasons why
concepts, relations and constraints are necessary. The use of goals can help in the identification of suitable
patterns, since the ontology engineer can search based on the goals to be achieved. Moreover, goals
composition can be explored to help in the search and selection of patterns for reuse. Differently from
GO-FOR, none of the aforementioned approaches use goals or design rationale information to aid the
search for patterns or ontologies. Goal-based search potentially brings better results because goals are in
a higher level than concepts. Hence, it is easier to talk with ontology engineers about their goals than
about concepts in the domain of interest. In addition, none of the approaches explicitly store design
rationale information alongside the patterns or ontologies. Thus, when the ontology engineer follows
these approaches, he/she must derive himself/herself the rationale behind the patterns or ontologies found.
Finally, only GO-FOR addresses the ontology development process as a whole, considering development
with and for reuse, enabling a virtuous reuse cycle.

9. Final Considerations

In this work, we advocate the use of goals as the central elements to define and search for ontology
patterns. We propose an evolution of GO-FOR, first introduced in (Reginato et al., 2019). GO-FOR is a
goal-oriented and pattern-based framework for ontology reuse, aimed to aid ontology reuse by providing
a mechanism for ontology engineers to create and search for ontology patterns based on their goals. By
proposing GO-FOR, our intention is to build not only a library of shared, reusable, linkable knowledge,
but also a structure to aid the understanding of the underlying rationale and in the reuse of this knowledge.

The main contributions of the work addressed in this paper are the framework itself, the goal-oriented
and pattern-based process for ontology development reusing GOOPs and other ontology fragments, and
the GOOP-Hub tool. Once the GOOP-Hub is properly populated, it can increase reuse, generating a
virtuous cycle of ontology development with reuse and for reuse. A secondary contribution of this paper
is the ontology built by using GO-FOR and that has been used to integrate healthcare data.

In GO-FOR, the selection of ontologies (more specifically GOOPs) is made by cognitive analysis
(Carriero et al., 2020) and the requirements to be met by the reused ontologies are first defined by means
of goals. By doing that, we use a higher level of abstraction than specific requirements (e.g., competency
questions) to guide ontology selection. By using goal models, we also enable to address the relations

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

among the patterns by considering the relations among the goals to which the patterns are associated.
Thus, different from catalogues that do not promote the sense of connection among the available patterns,
in GO-FOR, GOOPs can be combined according to the goals they to which they are related.

It is worth emphasizing that the purpose of GOOP-Hub is not to extract or consume ontology fragments
randomly from ontology repositories, but to record GOOPs when there is a clear understanding of its
goal. Thus, human interference is needed to define the goal and connect it to the ontology fragment. We
are aware that, on one hand, this limits the reuse of existing repositories. However, on the other hand, by
adding to the GOOP-Hub only ontology fragments related to the goals they are able to achieve and
following the proposed standardization to record GOOPs, we contribute to the retrieval of GOOPs aligned
to the ontology engineer goals and provide detailed information about each GOOP (e.g., description,
conceptual model, OWL file).

Besides the project about healthcare data described in this paper, we have also used GO-FOR in
previous projects to develop ontologies on water quality (Reginato et al., 2019) and crime (Santos et al.,
2018). The effort demanded to create GOOPs was justified by the benefits of reusing them, and goals
have shown to be a good reference to guide the searches. The results have indicated that the use of GO-
FOR is viable and contributes to increase development productivity and improve the quality of the
resulting ontology.

As limitations of our work, we highlight GO-FOR evaluation. GO-FOR was used by ontology
engineers of our research group. Therefore, we have knowledge of the GOOPs that have been stored in
the GOOP-Hub. Moreover, most of the ontology engineers that have used GO-FOR are familiar to GORE.
Hence, new applications and studies are necessary to achieve a robust evaluation and increase confidence
in the generality of the obtained results. In this sense, we intend to carry out studies, including controlled
experimental studies with ontology engineers with different experience levels, as well as new case studies
in which the authors will not be directly involved, to assess the usefulness and feasibility of the proposal
and the effects of its use on the ontology engineering process (e.g., by evaluating the quality of the
resulting ontology and the productivity in the development process, among others).

There are also limitations regarding GO-FOR components. Concerning the GO-FOR process, ontology
evaluation must be carried out by the ontology engineer. Thus, it depends on the ontology engineer
knowledge and available supporting tools (e.g., OLED (Guerson et al., 2015)). Concerning the definition
of goals and goal models, in the GORE field, there are several guidelines on how to define goals and
structure them in goal models. These guidelines are also valid when applying GORE to Ontology
Engineering. Even so, we believe that some guidelines to help the GO-FOR user to define goals would
be helpful. However, we have not defined specific guidelines for defining goals in GO-FOR yet.

As for the GOOP-Hub, up to now, the support we provide to the development of OWL ontology is very
basic in terms of exploring the full potential of this language. However, our work focuses on going from
the ontology requirements up to developing initial versions of the OWL ontology, placing strong
emphasis on conceptual models (e.g., reference ontologies and goal-oriented models) as tools to improve
the quality of the ontology under development. We hope that having an OWL draft ontology at hand
allows that existing works within the Semantic Web community may be used from then on to improve
the ontology’s reasoning capabilities.

Concerning the GOOP-Hub search algorithm, the GOOPs are returned based on a search string
provided by the ontology engineer based on the goal he/she wants to achieve. Many times, the kind of
knowledge is enough to determine that an ontology is appropriate for reuse; other times, however, non-
functional requirements such as level of expressivity and reasoning capabilities should be taken into
account as well. Thus, although the first criterion we consider to selecting candidate GOOPs is the goal
to be achieved, this is not enough. For example, if many GOOPs are returned, it may be difficult for the
ontology engineer to identify the one to be reused. Hence, we are working on establishing a set of
properties to evaluate GOOPs. Our purpose is to define a set of characteristics (e.g., documentation,

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

applicability, credibility, etc.) that can help the ontology engineer to identify, among several candidate
GOOPs that meet the ontology engineer goal, which one best fits his/her needs. These characteristics can
also be useful to estimate the reusability degree of a GOOP. Preliminary results of this study can be found
in (Nogueira et al., 2021).

As we explained in Section 1, the work presented in this paper is part of a larger research project. In
this paper we presented results obtained in the first part of the research project, which focused on
proposing the framework as a whole. We still have a lot of work ahead. As future work, we intend to
improve GO-FOR process by providing guidelines on how to define goals and GOOPs (which will also
be helpful to evaluate the quality of the defined goals and GOOPs). As for the GOOP-Hub, we plan to
populate the repository with new GOOPs and improve the search mechanism to consider different
lexicalizations and synonyms. We will also evolve the new feature to assign properties to GOOPs
(Nogueira et al., 2021) so that, when more than one GOOP is returned in a search, they can be ranked not
only by coverage (how it currently works) but also by other attributes such as reuse rate. Alongside, we
intend to provide a way for, as GOOPs are used, the user to make assessments of the GOOPs and give
information about how they were used (i.e., add context information for reuse). We also plan to include
functionalities in the tool to aid the integration of GOOPs to generate new GOOPs and help ontology
engineers in the integration of GOOPs into their ontologies. Finally, we intend to integrate an ontology
editor to GOOP-Hub, aiming to automatically generate code for ontology implementation from ontology
models.

According to Fernández-López et al. (2019), since ontologies are not being maintained and updated by
open communities, a candidate ontology to be reused may not reach minimal adoption requirements or it
may not be always available online. A possible approach to lessen these problems could be the creation
of communities similar to open software ones in charge of developing and maintaining ontologies. By
proposing GO-FOR, we take a step towards this direction. Our intention is to make GOOP-Hub available
for people creating, reusing, evaluating and evolving GOOPs.

Acknowledgment

This research is funded by the Brazilian Research Funding Agency CNPq (Processes 407235/2017-5,
433844/2018-3), FAPES (Process 69382549/2014 and TO 616/2018), CAPES (Process
23038.028816/2016-41 and Finance Code 001).

References

Aljahdali, S., Bano, J., & Hundewale, N. (2011). Goal Oriented Requirements Engineering -A Review. Proceedings of the 24th
International Conference on Computers and Their Applications in Industry and Engineering, 328–333.
https://doi.org/978-1-880843-83-3/ISCA

Barcellos, M. P., Falbo, R. D. A., & Frauches, V. G. V. (2014). Towards a Measurement Ontology Pattern Language.
Proceedings of the 1st Joint Workshop ONTO.COM / ODISE on Ontologies in Conceptual Modeling and Information
Systems Engineering, 2014.

Blomqvist, E., Gangemi, A., & Presutti, V. (2009). Experiments on pattern-based ontology design. Proceedings of the Fifth
International Conference on Knowledge Capture - K-CAP ’09, 41-48. https://doi.org/10.1145/1597735.1597743

Blomqvist, E., Hammar, K., & Presutti, V. (2016). Engineering Ontologies with Patterns-The eXtreme Design Methodology.
Ontology Engineering with Ontology Design Patterns- Foundations and Applications, 25, 23–50, IOS Press.

Bontas, E. P., Mochol, M., & Tolksdorf, R. (2005). Case Studies on Ontology Reuse. Proceedings of the IKNOW05
International Conference on Knowledge Management (Vol. 74), 345–353. https://doi.org/10.1016/j.sysarc.2006.02.002

Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-Oriented Software Architecture: On Patterns and Pattern
Languages. In Wiley Software Patterns Series, Vol. 5, John Wiley & Sons. https://doi.org/10.1093/intimm/dxu027

Caldarola, E. G., & Rinaldi, A. M. (2016). An approach to ontology integration for ontology reuse. Proceedings of the 2016

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

IEEE 17th International Conference on Information Reuse and Integration, IRI 2016, 384-393.
https://doi.org/10.1109/IRI.2016.58

Carriero, V. A., Daquino, M., Gangemi, A., Nuzzolese, A. G., Peroni, S., Presutti, V., & Tomasi, F. (2020). The Landscape of
Ontology Reuse Approaches. Studies on the Semantic Web - Applications and Practices in Ontology Design, Extraction,
and Reasoning, 49(section 1), 21–38. https://doi.org/10.3233/ssw200033

Cuenca, J., Larrinaga, F., & Curry, E. (2017). A unified semantic ontology for energy management applications.
WSP+WOMoCoE, Vienna, Austria, 86–97.

Davis, E. (1998). The Naive Physics Perplex. AI Magazine, 19(4), 51–79.
De Nicola, A., & Missikoff, M. (2016). A lightweight methodology for rapid ontology engineering. Communications of the

ACM, 59(3), 79–86. https://doi.org/10.1145/2818359
Falbo, R. A., Barcellos, M. P., Nardi, J. C., & Guizzardi, G. (2013). Organizing ontology design patterns as ontology pattern

languages. The Semantic Web: Semantics and Big Data. ESWC 2013. LNCS vol 7882, 61–75. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-38288-8-5

Falbo, R. A., Guizzardi, G., Gangemi, A., & Presutti, V. (2013). Ontology patterns: Clarifying concepts and terminology.
WOP'13: Proceedings of the 4th International Conference on Ontology and Semantic Web Patterns, 14–26.

Falbo, R. D. A. (2014). SABiO: Systematic approach for building ontologies. 1st Joint Workshop ONTO.COM / ODISE on
Ontologies in Conceptual Modeling and Information Systems Engineering, 1301.

Fernandes, P. C. B., Guizzardi, R. S. S., & Guizzardi, G. (2011). Using Goal Modeling to Capture Competency Questions in
Ontology-based Systems. Journal of Information and Data Management, 2(3), 527–540.

Fernández-López, M., Poveda-Villalón, M., Suárez-Figueroa, M. C., & Gómez-Pérez, A. (2019). Why are ontologies not
reused across the same domain? Journal of Web Semantics, 57. https://doi.org/10.1016/j.websem.2018.12.010

Franch, X., López, L., Cares, C., & Colomer, D. (2016). The i* Framework for Goal-Oriented Modeling. Domain-Specific
Conceptual Modeling, 485–506. Springer.

Gangemi, A., & Presutti, V. (2009). Ontology Design Patterns. Handbook of Ontologies, 221–243.
Gruber, T. (1991). The role of common ontology in achieving sharable, reusable knowledge bases. Principles of Knowledge

Representation and Reasoning: Proceedings of the Second International Conference, 601–602.
Guerson, J., Sales, T. P., Guizzardi, G., & Almeida, J. P. A. (2015). OntoUML lightweight editor: A model-based environment

to build, evaluate and implement reference ontologies. Proceedings of the 2015 IEEE 19th International Enterprise
Distributed Object Computing Conference Workshops and Demonstrations, EDOCW 2015, 144–147.
https://doi.org/10.1109/EDOCW.2015.17

Guizzardi, G. (2005). Ontological Foundations for Structural Conceptual Models. PhD thesis. The Netherlands.
Guizzardi, G. (2007). On Ontology, ontologies, Conceptualizations, Modeling Languages, and (Meta)Models. Databases and

Information Systems IV, 155, 18–39. https://doi.org/10.1017/CBO9781107415324.004
Guizzardi, G. (2014). Ontological Patterns, Anti-Patterns and Pattern Languages for Next-Generation Conceptual Modeling.

Proceedings of the 33rd International Conference of Conceptual Modeling, ER 2014, Atlanta, GA, USA, 13–27.
https://doi.org/10.1007/978-3-319-12206-9_2

Guizzardi, G., Fonseca, C. M., Almeida, J. P. A., Sales, T. P., Benevides, A. B., & Porello, D. (2021). Types and taxonomic
structures in conceptual modeling: A novel ontological theory and engineering support. Data and Knowledge
Engineering, 134. https://doi.org/10.1016/j.datak.2021.101891

Heath, T., & Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic
Web: Theory and Technology, 1(1), 1-136. https://doi.org/10.2200/S00334ED1V01Y201102WBE001

Hepp, M. (n.d.). Good Relations: An Ontology for Describing Products and Services Offers on the Web. Knowledge
Engineering: Practice and Patterns. EKAW 2008. LNCS, vol 5268, 329-346, Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-87696-0_29.

International Organization for Standardization. (2008). ISO/IEC 25012:2008 - Software engineering -- Software product
Quality Requirements and Evaluation (SQuaRE) -- Data quality model. In ISO/IEC. https://doi.org/10.1002/(SICI)1097-
0142(19990315)85:6<1277::AID-CNCR9>3.0.CO;2-E

Jarczyk, A. P. J., Loffler, P., & Shipmann, F. M. (1992). Design rationale for software engineering: a survey. Proceedings of
the Twenty-Fifth Hawaii International Conference on System Sciences, ii, v. 2, 577–586.
https://doi.org/10.1109/HICSS.1992.183309

Jureta, I. J., Borgida, A., Ernst, N. A., & Mylopoulos, J. (2010). Techne: Towards a new generation of requirements modeling
languages with goals, preferences, and inconsistency handling. Proceedings of the 2010 18th IEEE International
Requirements Engineering Conference, RE2010, 115–124. https://doi.org/10.1109/RE.2010.24

Katsumi, M., & Grüninger, M. (2016). What is ontology reuse? Frontiers in Artificial Intelligence and Applications, 9–22.
https://doi.org/10.3233/978-1-61499-660-6-9

Keet, C. M., Khan, M. T., & Ghidini, C. (2013). Ontology authoring with FORZA. Proceedings of the International
Conference on Information and Knowledge Management, Proceedings, 569–578.
https://doi.org/10.1145/2505515.2505539

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Keet, C. M., & Ławrynowicz, A. (2016). Test-driven development of ontologies. Sack H., Blomqvist E., d'Aquin M., Ghidini
C., Ponzetto S., Lange C. (eds) The Semantic Web. Latest Advances and New Domains. ESWC 2016. Lecture Notes in
Computer Science, v. 9678. Springer, Cham, 642–657. https://doi.org/10.1007/978-3-319-34129-3_39

Leung, N. K., Lau, S. K., Fan, J., & Tsang, N. (2011). An integration-oriented ontology development methodology to reuse
existing ontologies in an ontology development process. Proceedings of the 13th International Confrence on
Information Integration and Web-Based Applications and Services, 174–181. https://doi.org/10.1145/2095536.2095567

Liu, L., & Yu, E. (2004). Designing information systems in social context: A goal and scenario modelling approach.
Information Systems, 29(2), 187–203. https://doi.org/10.1016/S0306-4379(03)00052-8

Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A., & Schneider, L. (2003). {DOLCE}: a descriptive ontology for
linguistic and cognitive engineering. WonderWeb Project, Deliverable D18 - Ontology Library (Final), Technical
Report D18: http://wonderweb.man.ac.uk/deliverables/documents/D18.pdf

Mealy, G. H. (1967). Another look at data. Proceedings of theFall Joint Computer Conference - AFIPS ’67 (Fall), 14-16.
https://doi.org/10.1145/1465611.1465682

Nogueira, G. G., Barcellos, M. P., & Souza, V. E. S. (2021). Towards a Characterization to Aid in Ontology Reuse. (in press),
Proceedings of the XIV Seminar on Ontology Research in Brazil (ONTOBRAS 2021).

Noppens, O., & Liebig, T. (2009). Ontology patterns and beyond towards a universal pattern language. Workshop on Ontology
Patterns, 179–186.

Park, J., Oh, S., & Ahn, J. (2011). Ontology selection ranking model for knowledge reuse. Expert Systems with Applications,
38(5), 5133–5144. https://doi.org/10.1016/j.eswa.2010.10.002

Partridge, C., de Cesare, S., Mitchell, A., & Odell, J. (2018). Formalization of the classification pattern: survey of classification
modeling in information systems engineering. Software and Systems Modeling, 17(1), 167–203.
https://doi.org/10.1007/s10270-016-0521-5

Peroni, S. (2017). A simplified agile methodology for ontology development. Dragoni M., Poveda-Villalón M., Jimenez-Ruiz
E. (eds) OWL: Experiences and Directions – Reasoner Evaluation. OWLED 2016, ORE 2016. Lecture Notes in
Computer Science, v. 10161. Springer, Cham. https://doi.org/10.1007/978-3-319-54627-8_5

Pimentel, J., & Castro, J. (2018). PiStar tool - A pluggable online tool for goal modeling. Proceedings of the 2018 IEEE 26th
International Requirements Engineering Conference, RE 2018, 498-499. https://doi.org/10.1109/RE.2018.00071

Pinto, H. S., & Martins, J. P. (2001). A methodology for ontology integration. Proceedings of the International Conference on
Knowledge Capture KCAP 2001, 131-138. https://doi.org/10.1145/500737.500759

Presutti, V., Daga, E., Gangemi, A., & Blomqvist, E. (2009). eXtreme design with content ontology design patterns.
Proceedings of the Workshop on Ontology Patterns WOP'09, 516, 83–97, Washington, DC, USA.

Reginato, C. C., Salamon, J. S., Nogueira, G. G., Barcellos, M. P., Souza, V. E. S., & Monteiro, M. E. (2019). GO-FOR : A
Goal-Oriented Framework for Ontology Reuse. IEEE 20th International Conference on Information Reuse and
Integration for Data Science, Los Angeles, CA, USA, 2019, pp. 99-106, doi: 10.1109/IRI.2019.00028.

Ruy, F. B., Falbo, R. A., Barcellos, M. P., & Guizzardi, G. (2015). Towards an ontology pattern language for harmonizing
software process related ISO standards. Proceedings of the ACM Symposium on Applied Computing, 13-17-April-2015.
https://doi.org/10.1145/2695664.2695796

Ruy, F. B., Reginato, C. C., Santos, V. A., Falbo, R. A., & Guizzardi, G. (2015). Ontology Engineering by Combining
Ontology Patterns. Proceedings of the 35th International Conference on Conceptual Modeling (ER 2015), 173–186.
https://doi.org/10.1007/978-3-319-25264-3_13

Ruy, F. B., Falbo, R. de A., Barcellos, M. P., Costa, S. D., & Guizzardi, G. (2016). SEON: A software engineering ontology
network. Blomqvist E., Ciancarini P., Poggi F., Vitali F. (eds) Knowledge Engineering and Knowledge Management.
EKAW 2016. Lecture Notes in Computer Science, vol 10024, 527–542, Springer, Cham. https://doi.org/10.1007/978-3-
319-49004-5_34

Ruy, F. B. (2017). Software Engineering Standards Harmonization: an Ontology-Based Approach. PhD Thesis. Brazil.
Safyan, M., Khan, S., Latif, K., & Masood, A. (2008). Bridging hierarchical ontologies for interoperability and query

reformulation. Proceedings of the 2008 International Conference on Advanced Computer Theory and Engineering,
ICACTE 2008, 832–836. https://doi.org/10.1109/ICACTE.2008.212

Salamon, J. S., Reginato, C. C., & Barcellos, M. P. (2018). Ontology Integration Approaches : A Systematic Mapping.
Proceedings of the XI Seminar on Ontology Research in Brazil, 161–172.

Salamon, J. S., Reginato, C. C., Barcellos, M. P., & Guizzardi, R. S. S. (2017). Using goal modeling and ontoUML for
reengineering the good relations ontology. Proceedings of the X Seminar on Ontology Research in Brazil, 91–102.

Santos, L. A., Barcellos, M. P., Falbo, R. A., Reginato, C. C., & Campos, P. C. M. (2019). Measurement task ontology.
Proceedings of the XII Seminar on Ontology Research in Brazil, 95–106.

Santos, L. A., Miranda, G. M., Campos, S. L., Falbo, R. A., Barcellos, M. P., Silva Souza, V. E., & Almeida, J. P. A. (2018).
Using an ontology network for data integration: A case in the public security domain. Proceedings of the XI Seminar on
Ontology Research in Brazil, 209–220.

Struder, R., Benjamins, V. R. & Fensel, D. (1998). Knowledge Engineering: Principles and Methods. Data and Knowledge

 C. Reginato et al. / A Goal-Oriented Framework for Ontology Reuse

Engineering, 25 (1-2), 161–197, doi: 10.1016/S0169-023X(97)00056-6.
Van Lamsweerde, A. (2001). Goal-oriented requirements engineering: a guided tour. Proceedings of the Fifth IEEE

International Symposium on Requirements Engineering, 249–262. https://doi.org/10.1109/ISRE.2001.948567
Van Lamsweerde, Axel. (2009). Reasoning about alternative requirements options. Conceptual Modeling: Foundations and

Applications, LNCS v. 5600, 380–397, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02463-4_20
Yu, E. S. K. (1995). Modelling Strategic Relationships for Process Reengineering. PhD Thesis. Canada
Yu, E., Giorgini, P., Maiden, N., & Mylopoulos, J. (2011). Social Modeling for Requirements Engineering: An Introduction.
Social Modeling for Requirements Engineering, 760. https://doi.org/10.1109/SEW.2006.27.

