
A Framework to Support the Assignment of the
Active Structure and Behavior in Business Process Modeling

Rômulo H. Arpini and João Paulo A. Almeida

Ontology and Conceptual Modeling Research Group (NEMO),
Federal University of Espírito Santo (UFES)

Vitória, ES, Brazil
romuloarpini@gmail.com, jpalmeida@ieee.org

Abstract—Despite the importance of the relations between the
organizational domain and the business process domain, many of
the current enterprise architecture and business process modeling
approaches lack support for the expressiveness of a number of
important active structure allocation scenarios. This paper aims to
overcome these limitations by proposing a framework for active
structure assignment that can be applied to existing enterprise
architecture and business process modeling approaches. This
framework enriches the expressiveness of existing techniques and
supports the definition of precise active structure assignments. It
is designed such that it should be applicable to a number of
enterprise architecture and business process modeling languages,
i.e., one should be able to use and apply different (enterprise and
business process) modeling languages to the framework with
minor changes. We show the application of this general
framework to BPMN.
Business Process Modeling, Organizational Modeling,
Behavior, Active Structure, Assignment Framework, BPMN.

I. INTRODUCTION
Business process modeling addresses the way enterprises organize
their work and resources showing how they contribute to fulfilling
the enterprise’s strategies [11]. While the process domain focuses
on “how” the business process activities are structured and
performed, the organizational structure domain focuses on “who”
performs these activities, i.e., which kinds of entities in an
organization are capable of performing work.

Given the strong connection between the organizational behavior
and organizational resources, any comprehensive enterprise
modeling technique should explicitly establish the relations
between the modeling elements that represent organizational
behavior, called here behavioral elements, and those used to
represent the organizational resources (organizational actors)
involved in these activities, called here active structure elements.
Properly representing the assignment of active structure elements
and behavioral elements at design time is important to allow the
comprehensive analysis of business process and enterprise
architectures, e.g., from the perspectives of accountability,
authorization, and responsibility of organizational actors with
respect to the activities they execute. The assignment of active
structure and behavioral elements also supports business process
enactment and later phases of process management, such as
monitoring and evaluation [6].

Although several techniques (such as ArchiMate, ARIS, DoDAF,
XPDL, UML activity diagram and BPMN) offer some support for
establishing these relations, the levels of support and
expressiveness they offer vary significantly [1]. Several of these,

such as BPMN and UML activity diagrams are considered to offer
simplistic support (as seen in [2]), failing to provide required
expressiveness with respect to active structure assignment (e.g., as
evidenced by a low coverage of Workflow Resource Patterns
([10], [13]). Further, approaches based solely on business process
models (such as BPMN and XPDL), fail to identify relations with
rich organizational structure models and are thus unable to
express active structure assignment based on organizational
relations. Further, the semantics of active structure assignment is
poorly defined in many of these techniques, leading to ambiguous
or imprecise models. For example, in BPMN, while “Lanes” have
often been used to specify the assignment of active structure
elements to process fragments, such interpretation is informal and
not defined in the language semantics.

In this paper we intend to address these limitations by proposing a
framework for active structure assignment for enterprise
architecture and business process modeling approaches. This
framework should enrich the expressiveness of existing
techniques and support the definition of precise active structure
assignments.
We offer two main contributions: a generic assignment framework
applicable to a number of enterprise architecture and business
process modeling languages; and, an application of this
framework to BPMN, enriching its capabilities to express active
structure assignment.

This paper is further structured as follows: section II presents the
expressiveness requirements for the framework, which are based
on the Workflow Resource Patterns [9] and discusses the level of
support for these patterns in the existing enterprise and business
process modeling approaches; section III presents the assignment
framework, including the proposed generic assignment
metamodel; section IV discusses the application of the framework
to BPMN, binding the generic metamodels to the BPMN
metamodel and showing a usage example. Section V discusses
related work and, finally, section VI presents concluding remarks
and outlines topics for future work.

II. SUPPORT FOR WORKFLOW RESOURCE PATTERNS
The Workflow Resource Patterns form a comprehensive catalog
of common types of human resource allocation constraints [9].
They were developed by the Workflow Patterns Initiative, with
the goal of providing a conceptual basis for process technology.
The Workflow Resource Patterns capture the various ways in
which resources are represented and utilized in process
technologies and have been used to compare a number of
commercially available workflow management systems and
business process modeling languages. As discussed in [9],

workflow patterns can be used as requirements of expressiveness
for process-aware technologies, and this is role they will serve
with respect to our framework which is presented in section III.

We focus here on the core set of patterns that deals with task
allocation to human resources, and in particular those that may be
used at process definition time to restrict the range of human
resources that can undertake particular work items (task
instances). They are called the ‘creation patterns’.
The following ‘creation patterns’ have been defined in [9].

The Direct Distribution pattern captures the ability to determine
at design-time the specific resources to which the work items will
be distributed. The Role-based Distribution pattern captures the
ability to specify that a work item is to be performed by resources
that fulfill a specific role. For instance, we may want to specify
that the task ‘Review technical report’ is to be performed by a
manager (any manager, not a specific one). The Deferred
Distribution pattern captures the ability to specify that the
identification of the resource(s) that will be distributed to
instances of a task will be deferred until runtime (and thus not
specified at design-time). The Authorization pattern captures the
ability to specify privileges that a resource have regarding the
execution of a work item, for example, defining whether a
resource is authorized to execute or delegate a work item. The
Separation of Duties pattern captures the ability to specify that
two work items must be performed by different resources. For
instance, if we have a task that whose result is a report that will be
audited by a following task, we may want to guarantee that the
two tasks will be performed by different resources. The Case
Handling pattern is a specific approach based on the premise that
all the tasks on a process or sub-process are related and must be
performed by the same resource. The Retain Familiar pattern
captures the ability to specify that the resource who will undertake
a work item is the same that undertook the previous one. It is
particularly useful when there are sequential tasks and also may
help minimizing the switch time. It is a more flexible version of
the Case Handling pattern. The Capability-Based Distribution
pattern captures the ability to allocate resources to work items
based on specific capabilities they must have, so there must exists
some mechanism that allows to specify resource’s capabilities and
to use these when deciding the performer of a task. The History-
Based Distribution pattern captures the ability to distribute tasks
to the resources based on the history of execution they have on the
tasks. The operationalization of this pattern requires information
about previous executions. The Organizational Distribution
pattern captures the ability to distribute tasks to the resources
based on their positions within an organization and their relations
with other resources. Therefore, the process technology that
supports this pattern must assume an organizational model with
positions and some relationships between them. The Automatic
Execution pattern captures the ability to perform a task without
needing to be allocated to a specific human resource. Therefore,
there must exist some way to declare a task to be automatic and it
will be performed without any human interference.

We have reviewed ArchiMate, ARIS, DoDAF, XPDL, UML
activity diagram and BPMN for their support for these patterns.
We can observe that Direct Distribution, Role-Based Distribution
and Automatic Execution are directly supported by all of them.
Deferred Distribution is considered to be partially supported by all
of them, because they allow the modeler to refrain from
specifying the performer of the behaviors. We consider this kind
of support partial, since full support would require not only to

defer identification of a resource but also would require some run-
time mechanism for resource identification [9]. Authorization is
not supported by any of them, because they consider the assigned
performer to be the one that will execute a behavior, not
discussing other range of privileges that resources may have in
regards to behavioral elements. Separation of Duties, Case
Handling and Retain Familiar are not supported by any of them,
because they ignore the interdependences between performers of
behavioral elements. History-Based Distribution is also not
supported by any of them as the approaches cover mainly aspects
of design-time. Capability-Based Distribution is partially
supported in DoDAF, UML 2.0 Activity Diagram and BPMN,
because they offer some kind of mechanism to specify properties
that resources should have. However, because they do not offer a
full-fledged mechanism to allow the specification of resource
properties and their types and to use that in the assignment, we
consider the support for this pattern “partial”. Finally,
Organizational Distribution is partially supported in ArchiMate,
ARIS, UML and BPMN because they allow one to define a basic
organizational structure and use its hierarchy to define the
assignment, but they do not offer the possibility to use
organizational relationships when defining the assignment.

III. ASSIGNMENT FRAMEWORK
In this section, we present the assignment framework, which is
intended to address the limitations of the various techniques
discussed in section II. The framework is composed of a number
of metamodels, which together enable the expression of the
assignment of active structure and behavior.

A. Architecture
Figure 1 provides a general overview of the Assignment
Framework architecture. The middle layer shows the core of the
assignment framework and aims at covering the range of
assignments to be expressed. It includes an Assignment
metamodel which is integrated with an external Behavioural
metamodel, an Occurrence metamodel and Organizational
metamodel The metamodels in this middle layer provide the
metaclasses and meta-associations which will define assignments
as well as the elements that may be referred to in the various kinds
of assignments. The external Behavioral metamodel is a
placeholder for a specific metamodel of the technique being
extended by the framework (e.g., BPMN).

The top layer shows the Ecore metametamodel, which is
instantiated by all the metamodels in the middle layer, represented
by the instanceOf relationships. The OCLEcore package is built-
in feature of the Eclipse Modeling Framework (EMF) that allows
a designer to use OCL for queries and constraints on the
instantiating metamodels. These queries will be used in the run-
time environment to be able to satisfy the expression-based
requirements stated in the previous section. The bottom layer
shows how the model-based runtime environment works when the
framework is applied. Assignment, Behavioral, Occurrence and
Organizational models populate an organizational repository.
OCL queries referencing the models will be evaluated as required
to satisfy particular assignments in the Assignment model.

Figure 1 - Framework Architecture Overview

We assume the Behavioral model is defined at design-time, and
focus also on the design-time specification of active structure
assignment (although active structure assignment may refer to
runtime information as we will see in the following). An
Organizational model is defined and modified at design-time and
run-time in order to accommodate a changing organizational
structure. An Occurrence model deals only with run-time
information, getting populated automatically by a process-aware
application or a process enactment environment (such as a
workflow system or business process management engine).

The framework is designed such that it can be applied as a
lightweight extension to existing technologies (thus not involving
the modification of existing metamodels). As a consequence, the
assignment metamodel is built to be as loosely coupled as
possible.

Figure 2 shows the basic relationships between the metamodels as
well as the levels of modeling that they deal with. As we can see,
the behavioral metamodel covers the behavioral aspects at type
level, defining the types of processes and activities that will be
instantiated at process run-time. The occurrence metamodel is
considered to be at instance level, as it represents actual
occurrences (instances) of types of processes and activities
defined in a behavioral model. Suppose we have an activity called
“Send report” defined in a behavioral model (at type level). The
records of execution(s) of this activity are represented at instance
level and are covered in the occurrence metamodel.

Figure 2 - The different metamodeling levels and their dependencies

The organizational metamodel is considered to cover both levels,
as seen in many modeling techniques, such as ARIS. For instance,
in an organizational model there will be type level elements, for
instance positions like ‘Engineer’, ‘Manager’ and instance level
elements, like the humans that work at the organization being
modeled, i.e., ‘John’, ‘Paul’, etc.
The occurrence metamodel depends on the behavioral metamodel
to determine the processes or activities in the behavioral model
that are instantiated in particular occurrences. It also depends on
the organizational metamodel because it refers to the particular
individuals that performed the behaviors. The Assignment
metamodel depends on all the other metamodels in the framework
because it needs to be able to refer to specific activities in the
behavioral model, possible past occurrences of activities in the
occurrence model and resources in the organizational model. We
will see how these dependencies are used in assignments in the
subsequent sections.
The behavioral model is independent of the other metamodels,
and is only referred to by other metamodels. This is an important
characteristic of the approach as it enables us to employ
previously existing behavioral metamodels (such as, e.g., the
BPMN metamodel) without alteration. In order to cope with
different behavioral metamodels, the relation between the
Assignment metamodel and the behavioral metamodel is
parameterized (this is discussed further in sections III.C and III.D
employing an abstraction of the various behavioral metamodels
and the generic capabilities of EMF.)

B. Organizational Metamodel
Many of the modeling techniques we have considered in section 2
include elements to model organizational elements. Nevertheless,
there is a wide range of differences in the coverage of concepts,
ranging from very simplistic (e.g., BPMN, with no organizational
relations) to sophisticated (e.g., ARIS, with various kinds of
relations). Unfortunately, there is no standard or reference model
developed for this domain yet (although there were some efforts,
such as, e.g., an Organizational Structure Metamodel effort of the
Object Management Group [7]). Thus, we have consolidated
many of these elements into an abstract organizational metamodel
(Figure 3), which provides us with basic elements required for
organizational-based assignments.

The organizational metamodel has the OrganizationalModel
metaclass, which will serve as the container for all the elements
that comprise a specific organizational model. These elements are
what we call the ActiveStructureElements, the topmost abstract
class that subsumes almost all the concepts defined in the
metamodel. An ActiveStructureElement is further specialized into
two classes: ActiveStructureIndividual, which is the topmost class
covering active structure elements at the instance level and
ActiveStructureClassifier, which is the topmost class covering
active structure elements at the type level.

An ActiveStructureIndividual may be an ActiveStructureAgent,
which in its turn may be an OrganizationalUnit, a Group or a
Human. An ActiveStructureAgent may have Attributes that
characterizes them. For instance, a Human named ‘João Paulo’
may have an Attribute ‘experience as professor’, with its value set
to 10 (years) in a given time. An ActiveStructureRelator
represents a relation between two or more ActiveStructureAgents.
For instance, we may have an ActiveStructureRelator
‘SupervisionJoaoPauloRomulo’ that relates a specific human
named ‘Joao Paulo’ to another specific human named ‘Romulo’.

This relationship between two or more ActiveStructureAgents,
which we call mediates, is ordered, because each part being
mediated has a different role in the relationship. In the previous
example, for instance, ‘Joao Paulo’ is the ‘Supervisor’ and
Romulo is the ‘student being supervised’.

An ActiveStructureClassifier may be an ActiveStructureClass or an
ActiveStructureRelatorClassifier. An ActiveStructureClass is the
main element for being the one that will represent the various
types that are defined within an organization and they may have
Properties, which are the types of attributes that agents may have.
The isOfType relationship to DataType will represent the specific
data type of Property. An ActiveStructureRelatorClassifier
represents a relation between two or more ActiveStructureClasses.
For instance, consider a ‘Supervision’ ActiveStructureRelatorClas-
sifier, which mediates the ActiveStructureClasses ‘Professor’ and
‘Master Student’. An ActiveStructureRelatorClassifier may be
further specialized into a MeronymicClassifier, which in its turn
may be further classified into a MemberOfMeronymicClassifier and
ComponentOfMeronymicClassifier relator classifiers to represent
the different categories of whole-part relations.

C. Assumptions on a Behavioral Metamodel
Our framework assumes that a behavioral metamodel includes
elements that represent the units of behavior that will be assigned
to perform some work. In the reviewed techniques, these elements
are often called Activities, Tasks or Processes. In some of those
techniques, Activity is a more general concept while Task is a
specialized Activity which represents the most refined unit of
work, as is the case in XPDL and BPMN. Further, in some of the
reviewed techniques, Process is considered a special unit of
behavior that may include other units of behavior, as is the case in
XPDL and BPMN. A behavioral metamodel may or may not
consider Activities, Tasks and Processes as specializations of a
more abstract metaclass. For example, XPDL and BPMN do not
have such a more abstract metaclass, while ArchiMate includes
only the more abstract Business Processes.

Given the possible variations in behavioral metamodels, in order
to cope with most of the modeling techniques, the assignment
metamodel must be able to assign active structure elements to any
of the elements that represent units of behavior. We assume thus

that the behavioral metamodel may have two separate types of
behavior elements (which we call conveniently activity and
process) or a single type of behavior element (either an activity or
a process).

D. Behavioral Occurrence Metamodel
Since we need to be able to specify assignments based on the
history of execution of activities, we are required to refer to past
executions. The behavioral occurrence metamodel was created to
define the structure of information on these past executions and its
main elements are shown in Figure 4.

Figure 4 - The Behavioral Occurrence Metamodel

The main element of the metamodel is the BehavioralOccurrence
abstract metaclass, which represents the actual occurrence of
some behavior. A BehavioralOcurrence has a number of
relationships to metaclasses of other metamodels. The
instanceOfActivity relationship shows that a BehavioralOccurrence
may instantiate an “activity” concept from some behavioral
metamodel, meaning that the BehavioralOccurrence is an actual
performance (instance level) of the referred “activity” (type level).
In order to avoid the direct integration of an existing metamodel
of a process technology, we use EMF generic capabilities to
parameterize the occurrence metamodel. Thus, the “A” metaclass
that is being referred to is a parameter of the metamodel and will
be replaced when this metamodel is instantiated by a metaclass of
an existing behavioral metamodel of a specific process technology
(e.g. BPMN) with the similar behavioral concept of an activity
(e.g. Activity in BPMN). The participation relationship shows that
a BehavioralOccurrence may have the participation of an

Figure 3 - Organizational Metamodel

ActiveStructureAgent. Lastly, a result relationship has been
included, to represent the result of some piece of behavior (using
the generic metaclass EObject.) This will be used in a special kind
of assignment which refers to the results of previous occurrences.

BehaviouralOcurrences are further specialized into
SimpleBehaviourOcurrence and ComplexBehaviouralOcurrences.
A SimpleBehavioralOccurrence represents the execution of a
behavior that may not be further divided in finer grained
behaviors (often called ‘tasks’ or ‘atomic activities’ in process
modeling techniques). The instanceOfActivity relationship of a
SimpleBehavioralOccurrence must refer to an activity of the
behavioral metamodel that is atomic, i.e., that is not further
subdivided. A ComplexBehavioralOccurrence is composed of two
or more BehavioralOccurrences and represents a single execution
of a behavior that may be further decomposed into finer grained
behaviors (often represented by processes and subprocesses in
process modeling techniques). A ComplexBehavioralOccurrence
may also have a relationship to a process concept of a behavioral
metamodel, which is reflected in the “P” parameter of the
instanceOfProcess meta-association. Thus, a ComplexBehavior-
alOcurrence may refer to either a (non-atomic) activity through
the instanceOfActivity relationship or refer to a process through the
relationship instanceOfProcess.

E. Assignment Metamodel
Figure 5 shows the metaclasses and the main attributes of the
Assignment metamodel. An AssignmentModel represents the
specification of assignments, including thus at least one
Assignment, which captures the relation between the behavioral
and organizational models.

Figure 5 - Assignment Metamodel

Assignment is the top-level abstract metaclass is further
specialized into SimpleAssignment and ComplexAssignment.
There must be at most one Assignment for each behavior present
in the behavioral model, which may be an instance of an “A” or
“P” metaclass. Similarly to the behavioral occurrence metamodel,
the “A” and “P” metaclasses are parameters of this metamodel
and will be replaced when this metamodel is instantiated by
metaclasses that represent the different types of behavior elements
in the behavioral metamodel (“A” stands for activity and “P”
stands for process).

SimpleAssignment is an abstract metaclass that is further
specialized into the various different types of Assignments, which
we discuss in the following sections. In order to address the
pattern concerning Authorization, all SimpleAssignments must

have an AssignmentType, which may be one of the following:
Obligation, stating that the active structure element(s) referred to
in the assignment must perform the referred behavioral element;
or, Prohibition, stating that the active structure element(s) referred
to in the assignment may not perform the referred behavioral
element (Permission is the default assignment type in the absence
of assignments for a behavior element, following the motto
“everything that is not explicitly prohibited is permitted”. We
chose this approach to avoid forcing the modeler to explicitly state
the entities that would be permitted to perform the behaviors,
which would often lead to models that are unnecessarily verbose.)

A DirectAssignment determines at design-time the specific agent
(OrganizationalUnit, Group or Human) involved in the assignment.
A DirectAssignment of type Obligation determines at design-time
the agent who must execute all instances of the referred behavior
element, either a process or an activity. This is the only type of
assignment for which we know at design-time what real-world
entity will perform all instances of the referred behavioral
element, and thus is an assignment with the highest level of
determinism. For example, if we would like a specific Human to
be the performer of every occurrence of a certain activity, we
should use a DirectAssignment of type Obligation. The same
applies if we would like to specify that the responsibility for the
execution of every instance of a behavior is to be set to an
OrganizationalUnit or Group.
A DirectAssignment of type Prohibition specifies that one real-
world entity (i.e., one Human, Group or OrganizationalUnit) is not
allowed to perform any instance of that referred behavioral
element. Considering an organizational model with many active
structure elements, there is still a high level of indetermination in
the execution of the instances of the referred behavioral element.
The identity of the agent that will perform the referred behavior
will only be known at run-time and the selection of the performer
is dependent of run-time infrastructure policies, which is outside
the scope of this work.

A ClassBasedAssignment determines at design-time an
ActiveStructureClass for the assignment. A ClassBasedAssign-
ment of type Obligation determines at design-time that the
performer who must execute all instances of the referred behavior
element must be an instance of the referred ActiveStructureClass.

As an ActiveStrutureClass is a type level entity, this means that at
run-time, an ActiveStructureAgent must be chosen to perform an
instance of the selected behavior in case it is of type Obligation.
From the perspective of the assignment framework, the exact
instant in which the assignment is evaluated and the
ActiveStructureAgent is chosen will be defined non-
deterministically at run-time and may happen at any moment after
the behavioral element of the referred assignment is enabled (i.e.,
when its preconditions and dependencies are satisfied) and before
its execution has started. There may exist zero, one, or many
ActiveStructureAgents that instantiate the selected ActiveStruc-
tureClass when the assignment is evaluated. For the type
Obligation, run-time mechanisms, which are outside the scope of
this work, are required to deal with the cases in which no agent
instantiate the selected class and in which several agents
instantiate the selected class. For instance, the run-time
infrastructure may randomly choose one particular agent to
perform an activity in the case several agents instantiate the
selected class. In any case, the identity of the real-world entity
that will perform each instance of the behavior will only be

known at run-time, as the extension of the class may change
arbitrarily at run-time.

A ClassBasedAssignment of type Prohibition specifies that any
real-world entity that is an instance of that ActiveStructureClass is
not allowed to perform any instance of the referred behavior. This
applies to all possible cases, irrespective of whether there is one,
many or none agents that are instances of the ActiveStruc-
tureClass. The run-time infrastructure will have to choose one
agent that is not an instance of the referred ActiveStructureClass to
perform the assigned behavior

An ExpressionBasedAssignment defines at design-time an OCL
expression that will be evaluated at run-time constraining the
possible ActiveStructureAgents that will perform the referred
behavior. In ExpressionBasedAssignments, the context of the
OCL expression will always be the newly created BehavioralOc-
currence of the referred behavior of the
ExpressionBasedAssignment. This behavioral occurrence is
created non-deterministically at runtime after the occurrence is
enabled (i.e., when its preconditions and dependencies are
satisfied). That is mandatory because expression may refer to
information that is only available during process run-time. For
instance, we may want that the specific agent that performed the
previous activity A in a specific instance of a process to be the
performer of the next activity B. In this case, the identity of the
agent will only be known when the performer for A is known at
process run-time. Similarly to what we have discussed for class-
based assignment, the exact instant in which the expression is
evaluated will be defined non-deterministically at run-time and
may happen at any moment after the behavioral occurrence of the
referred behavior is enabled and before its execution has started.

The OCL expression may return either a single ActiveStructureA-
gent, a set of ActiveStructureAgents (one of which will be selected
in case of type obligation) or a single ActiveStructureClass (which
is treated similarly to a ClassBasedAssignment).

An ExpressionBasedAssignment is used in our framework to
address a variety of patterns, namely: (i) Capability-Based
Distribution, in which case an expression will navigate through
attributes and properties of agents and classes to define the
possible performers; (ii) Case Handling, Retain Familiar and
Separation of Duties, in which case an expression will navigate
through the occurrences of the same complex behavior ocurrence
to define the performer (or to prohibit specific performers); (iii)
History-Based Distribution, in which case an expression will
navigate through the historical occurrences to define possible
performers; and (iv) Organizational Distribution, whose
expression will navigate through the organizational relationships
that agents have to define the possible performers. By employing
expression-based assignments we are also able to cover an
additional kind of assignment which we call Result-Based
Assignment. In a result-based assignment, an expression will
navigate through the result of past occurrences to determine the
performer of the behavior referred to in the assignment

ConjunctiveAssignment is a specific type of ComplexAssignment
indicating that all the composing Assignments must be satisfied at
the same time during the run-time evaluation of the composing
Assignments. Each instance of this type of ComplexAssignment
refers to a specific behavior, so it may be used when a
SimpleAssignment is not expressive enough to define the
assignment of a behavior. It may be composed of SimpleAssign-
ments and/or DisjunctiveAssignments. For example, we may have

a ConjunctiveAssignment composed of a CapabilityBasedAssign-
ment of type Obligation as an expression that queries the
Professors with at least 5 years of experience in an organizational
model, and a HistoryBasedAssignment of type Obligation
indicating that the professor must have performed that task at least
five times. This type of ComplexAssignment does not have an
AssignmentType: this will come from the composing
SimpleAssignments. When all composing assignments are of type
Obligation, the set of possible performers for a conjunctive
assignment is given by the intersection of all the agents selected
by the composing assignments. When all composing assignments
are of type Prohibition, the set formed by the union of all the
agents selected by the composing assignments is prohibited from
performing the behavior referred to in the assignment. Due to
space constraints, we do not elaborate here on the semantics of
complex assignments which mix obligation and prohibition. Our
framework also supports DisjunctiveAssignments for which at
least one of the composing assignments (either SimpleAssign-
ments or ConjunctiveAssignments) must be satisfied during the
run-time evaluation of the composing Assignments. When all
composing assignments are of type Obligation, the set of possible
performers for the disjunctive assignment is given by the union of
all the agents selected by the composing assignments. When all
composing assignments are of type Prohibition, the set formed by
the intersection of all the agents selected by the composing
assignments is prohibited from performing the behavior referred
to in the assignment.

IV. APPLICATION TO BPMN
In this section, we discuss the application of the Assignment
framework to BPMN. This enables us to: (i) instantiate the
framework with respect to a concrete behavioral metamodel (that
of BPMN) and (ii) illustrate the application of the approach in a
concrete usage scenario which exercises the expressiveness of the
assignment framework. Since BPMN does not provide constructs
for organizational modeling we adopt the organizational
metamodel embodied into the framework to provide us with all
the organizational elements required.

In BPMN, all the work that is performed in the scope of a
particular business process is represented through the Activity
concept [8], which is the abstract class for all the concrete Activity
types, like a SubProcess and Task. Thus, the Activity metaclass
will be the direct target of the relationship instanceOfActivity of the
BehavioralOccurrence metaclass, presented in section III.C. It will
also be the direct target of the ofAnActivity relationship of the
SimpleAssignment metaclass presented in section III.D. Process is
described in BPMN as “a sequence or flows of activities in an
organization with the objective of carrying out work” and they
“can be defined at any level from enterprise-wide processes to
processes performed by a single person”. Process is the target of
the instanceOfProcess relationship of the BehavioralOccurrence
metaclass and the ofAProcess relationship of the SimpleAssign-
ment metaclass. Our work is focused on Process and
Collaboration Diagrams; Choreography and Conversation
diagrams are considered outside the scope.

Figure 6 shows the business process model that will be the subject
of the illustration of how the Assignment framework enriches the
expressiveness of the active structure assignment in BPMN. It
represents a process of writing and defending a master’s
dissertation. The process begins with a master’s student writing
his dissertation’s first version, which is the first activity of the

process. After concluding this activity, the student submits the
manuscript for review. Then a professor, which supervises his
master’s degree, analyzes the dissertation. The outcome of this
activity defines which activity will follow. If the professor
considers that there are issues on the text that must be addressed,
he/she submits his considerations to the student, and the student
then considers that to rewrite the dissertation. These activities will
be performed until the professor approves the dissertation text.
Then, the next step of the process will be the activity in which the
professor defines the examination board and schedules the
defense. Afterwards, when the scheduled time arrives, the
master’s student defends his dissertation and the next activity will
be the evaluation of the dissertation and presentation, performed
by the examination board. There may be two outcomes for this
activity: the acceptance or the rejection of the dissertation,
completing the process. The process relies on an organizational
model that defines the classes “Student” (and its property “GPA”),
“Professor”, and, at run-time, a group to represent the examination
board (we have defined a profiled UML class diagram to represent
the organizational model; the model is omitted here due to space
constraints.)

Figure 6 - BPMN model example

The following assignment constraints apply to the process:

The activity ‘Write Dissertation First Version’ must be performed
by a Master Student. The sub-Process ‘Work on Dissertation’
must be performed by the same agent that performed the previous
activity ‘Write Dissertation First Version’. The activity ‘Defend
Dissertation’ must be performed by the same agent that performed
‘Write Dissertation First Version’ and according to the rules,
students that have a grade point average (‘GPA’) below ‘7.0’ are
not allowed to perform this activity. The activity ‘Analyze
Dissertation’ must be assigned to an agent that: (i) has performed
this activity at least three times before; (ii) has at least 5 years of
experience as a professor; and (iii) is a supervisor of the specific
student that wrote the dissertation (i.e., that performed the
previous activity ‘Write Dissertation’). The activity ‘Submit
observations for consideration’ must be performed by the same
agent that performed the previous activity ‘Analyze Dissertation’.
The activity ‘Approve Dissertation text’ must be performed by the
same agent that performed the previous activity ‘Analyze
Dissertation’. The activity ‘Define examination board’ must be
performed by the same agent that performed the previous activity
‘Analyze Dissertation’. Finally, the activities ‘Evaluate
Dissertation and Presentation’, ‘Accept Dissertation’, ‘Reject

Dissertation’ must be performed by the group that was defined in
the previous activity ‘Define Examination Board’.

In order to specify the assignments described informally above,
we instantiate the assignment metamodel. Due to space
constraints, we focus here on the assignment involving the activity
‘Defend Dissertation’. This is a conjunctive assignment (an
instance of ConjunctiveAssignment) with two composing
ExpressionBasedAssignments (one with assignment type
Obligation and one with assignment type Prohibition). The first
assignment determines that the agent that performs ‘Defend
Disseration’ should be the same one that performed ‘Work on
Dissertation’, with the following expression:
self.isContained.contains->select(

instanceOfActivity.name = 'Work on Dissertation').participation
The second composing assignment is an ExpressionBasedAssign-
ment of type Prohibition, to ensure that a ‘Master Student’ with a
‘GPA’ below ‘7.0’ is prohibited to perform the activity. This
assignment contains the following OCL expression, which
retrieves all agents with a GPA below ‘7.0’:
genericOrganizationalMetamodel::ActiveStructureClass.allInstances()->select(
 name = 'Master Student').hasProperty->select(
 name = 'GPA').hasAttributes->select(
 value.toReal()<7.0).characterizedAgent

The expression retrieves the ‘Master Student’ class and then
collects all its properties. Then, it specifically selects the ‘GPA’
property, collects all the attributes that instantiate this property,
selecting the ones with a value lower than ‘7.0’. Finally, it returns
each agents that carry these attributes.

A. Prototype
To test the integration of our framework to BPMN, we have
developed a prototype. It was implemented using the native EMF
capabilities to manipulate models that are built in Ecore. Our
example BPMN model was designed and edited in the STP
BPMN Modeler. We have simulated the required organizational
repository by creating dynamic instances of the organizational and
occurrence metamodels through the EMF mechanisms. This
repository allows us to evaluate the OCL expressions in the
assignments above.

An integration to a runtime environment (such as a particular
business process engine) is yet to be implemented. Since the
approach we have employed so far enables the programmatic
evaluation of assignment expressions, we believe this could be the
basis for the integration the framework into an existing run-time
infrastructure (such as that of jBPM, for example).

V. RELATED WORK
Recently, a number of works have been proposed to extend
BPMN to support the workflow resource creation patterns. In [2],
the authors extend the BPMN metamodel to include concepts
related to human resources to accomplish the work presented in a
process. Roughly, the extended metamodel includes run-time
concepts, like Case and WorkItem, respectively instances of
Process and Task. Thus differently from our approach, the
extended BPMN metamodel mixes design-time and run-time
elements, which is undesirable from the process model
management perspective and also characterizes a heavyweight
extension of the language. Similarly to our approach, they rely on
OCL constraints to specify assignments constraints.
The work proposed in [5] also extends the BPMN metamodel to
support the resource perspective, taking into account not only the

creation patterns, but all of the workflow resource patterns.
Furthermore, it also specifies a set of advanced resource patterns
which the author considers to be new patterns identified in newly
presented scenarios. Similarly to [2], the metamodel which
extends BPMN also mixes design-time and run-time elements.

In [4], Grosskopf firstly performs an assessment of BPMN and
BPDM in regards to a considered set of relevant workflow
resource patterns. It then proposes a metamodel extension based
on BPDM, introducing new associations and attributes to capture
the not yet supported patterns. It assumes the existence of an
expression language to define allocation constraints, although it
does not adopt a particular language, considering this to be a
technical choice.

The authors in [3] define a Resource Assignment Language
(RAL), which is a “textual language to express resource
assignments in the activities of a business process in BPMN”.
RAL is used considering an extension of the BPMN metamodel
that include organizational features. As a limitation, the history of
past executions is not considered in RAL. The approach supports
all creation patterns except the history-based distribution pattern.
The authors in [12] propose an extension to the BPMN 2.0
metamodel to support the modeling and visualization of the
resource perspective. The proposed BPMN extension is also
validated against a large set of the workflow resource patterns,
going beyond the creation patterns, although it does not directly
support history-based distribution. Differently from the previously
mentioned efforts, the authors extend BPMN with its built-in
extension mechanisms, which allow attaching additional attributes
and elements to BPMN elements. As it uses the BPMN
mechanism for extensions, it keeps the models interchangeable
because the standard elements are not modified.
Finally, differently from our approach all the works cited here
(but [2]) consider the allocation of resources to activities, not
considering the allocation to Processes. Further, none of the
approaches explicitly include deontic notions such as prohibition
as a primitive element.

VI. CONCLUSIONS AND FUTURE WORK
We have introduced an assignment framework to enrich the
expressiveness of existing enterprise and business process
modeling techniques and support the definition of precise active
structure assignments. We have proposed a model-driven
framework that employs an organizational metamodel, a
behavioral occurrence metamodel, and an assignment metamodel.
The resulting assignment metamodel is able to express all of the
creation workflow resource patterns involving allocation of
organizational agents. Further, it supports an expressive constraint
language to define sophisticated assignments.

To apply our framework to existing business process modeling or
enterprise architecture modeling languages, the generic behavioral
concepts referred to by the behavioral occurrence metamodel and
the assignment model are bound to specific concepts from the
metamodels of the adopted languages. In this paper, we have
shown the application of the framework to BPMN, using the
concepts of activity and process.
We have defined our framework making as little assumptions as
possible concerning the behavioral metamodel. Thus we believe
that the approach has the potential to be applied to different
metamodels. In our future work, we intend to report on our efforts
to apply the assignment framework to other process and enterprise

modeling languages (such as ArchiMate). Further, we should
define an integration of the approach in a process-aware system
considering the runtime environment, in order to support to the
actual execution of the assigned behaviors. We should also focus
on use cases to validate the usability of the proposed framework.
These may reveal lack of expressiveness that may require
extending the framework proposed here. Finally, defining a
simpler concrete syntax for the assignment expressions should
also be target of future investigation. An end user environment
could transform expressions defined in a simpler concrete syntax
into OCL, thus enhancing the framework’s usability while still
profiting from OCL’s well-defined syntax, semantics and tooling.

ACKNOWLEDGMENTS
This research is funded by the Brazilian Research Funding
Agencies CAPES, FAPES (grant number 59971509/2012) and
CNPq (grants number 310634/2011-3 and 485368/2013-7).

REFERENCES
[1] Arpini, R. H., Almeida, J. P. A., On the support for the assignment

of active structure and behavior in enterprise modeling approaches,
Proc. of the 27th Annual ACM Sym-posium on Applied Computing
(SAC '12), 1686–1693, 2012.

[2] Awad, A., Grosskopf, A., Meyer, A., and Weske, M. Enabling
resource assignment constraints in BPMN. Technical Report, Hasso
Plattner Institute, 2009.

[3] Cabanillas, C., Resinas, M., and Ruiz-Cortés, A. Towards the
definition and analysis of resource assignments in BPMN 2.0, tech.
rep., Universidad de Sevilla, 2011.

[4] Grosskopf, A. An extended resource information layer for BPMN.
Technical Report, Hasso Plattner Institute, 2007.

[5] Meyer, A. Resource Perspective in BPMN: Extending BPMN to
Support Resource Management and Planning. Master’s Thesis,
Hasso Plattner Institute, 2009.

[6] Muehlen, M. Z. Organizational Management in Workflow
Applications – Issues and Perspectives. Information Technology and
Management, 5 (3-4), 2004, 271-294.

[7] Object Management Group (OMG). Organization Structure
Metamodel (OSM) 3rd initial submission. OMG document, bmi/09-
08-02, 2009.

[8] Object Management Group (OMG). Business Process Modeling
Notation (BPMN) 2.0 Specification. OMG document, formal/2011-
01-03, 2011.

[9] Russell, N., ter Hofstede, A.H.M., D. Edmond, and van der Aalst,
W.M.P. Workflow Resource Patterns. Technical report, Queensland
University of Technology, Australia, 2010.
http://www.workflowpatterns.com/patterns/resource, last accessed at
17/05/2011.

[10] Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M., and
Wohed, P. On the suitability of UML 2.0 activity diagrams for
business process modelling. APCCM '06: Proceedings of the 3rd
Asia-Pacific conference on Conceptual modeling, Darlinghurst,
Australia, 2006, 95-104.

[11] Sharp, A., and McDermott, P. Workflow Modelling Tools for Process
Improvement and Application Development. Artech House, 2001.

[12] Stroppi, L, Chiotti, O, Villarreal, P. A BPMN 2.0 Extension to Define
the Resource Perspective of Business Process Models. XIV Ibero-
American Conference on Software Engineering (CIbSE), Rio de
Janeiro, Brazil, 2011.

[13] Wohed, P., van der Aalst, W.M.P., van der Dumas, M., ter Hofstede,
A.H.M., Russell, N. Pattern-based Analysis of BPMN - An extensive
evaluation of the Control-flow, the Data and the Resource
Perspectives. BPM Center Report BPM-06-17, BPMcenter.org,
2006.

