
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/241623622

A Configuration Management task ontology for semantic integration

Article · March 2012

DOI: 10.1145/2245276.2245344

CITATIONS

12

READS

83

2 authors:

Some of the authors of this publication are also working on these related projects:

LifeBOX – Transporte e monitoramento de córnea de forma inteligente. View project

Standards Harmonization View project

Rodrigo Calhau

Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo…

13 PUBLICATIONS 35 CITATIONS

SEE PROFILE

Ricardo de Almeida Falbo

Universidade Federal do Espírito Santo

172 PUBLICATIONS 1,661 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ricardo de Almeida Falbo on 23 December 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/241623622_A_Configuration_Management_task_ontology_for_semantic_integration?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/241623622_A_Configuration_Management_task_ontology_for_semantic_integration?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/LifeBOX-Transporte-e-monitoramento-de-cornea-de-forma-inteligente?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Standards-Harmonization?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo_Calhau?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo_Calhau?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_Federal_de_Educacao_Ciencia_e_Tecnologia_do_Espirito_Santo_IFES?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rodrigo_Calhau?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Federal_do_Espirito_Santo?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Falbo?enrichId=rgreq-86ad8c72cf516137a9ce87b662f4c29d-XXX&enrichSource=Y292ZXJQYWdlOzI0MTYyMzYyMjtBUzoxNzc1MDQwMTA2NDE0MDhAMTQxOTMzMTY2MjcyOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Configuration Management Task Ontology for Semantic

Integration
Rodrigo Fernandes Calhau, Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO), Computer Science Department

Federal University of Espírito Santo, Vitória, Brazil

 +55-27-4009-2167

{rfcalhau, falbo}@inf.ufes.br

ABSTRACT
Configuration Management (CM) is an important task for
developing complex products. It is a complex task and there are

many CM systems that aim to support it. However, generally,

these systems work in isolation and there is a need for integrating
them. In this context, ontologies have an important role, acting as

an inter-lingua to help achieving a shared conceptualization that

allows semantic integration. This paper presents an ontology of
the CM task. This ontology was built with the purpose of

supporting semantic integration of CM systems, mainly in service

and process layers of integration.

Categories and Subject Descriptors
D.2.12 [Interoperability]

General Terms
Management, Languages.

Keywords
Task Ontology; Configuration Management; Semantic

Integration.

1. INTRODUCTION
Configuration Management (CM) is a fundamental task for
developing complex products. It is a management activity that

provides technical and administrative guidelines for the lifecycle
of a product, and its configuration items (CIs). CM drives and

controls the evolution of the product configuration and provides

information to prevent disorder in its development [1]. This
control occurs primarily through the process of identifying and

defining the product’s CIs, controlling changes on them

throughout the product lifecycle, recording and reporting the
status of the CIs and the change requests, and verifying the

completeness and correctness of the items [2, 1].

CM is a complex task and needs to be supported by tools. There

are many systems that can be used to support the CM process,

such as version control systems, change control systems and issue

tracking systems. However, these systems typically support only
part of the CM process, and more than one tool has to be used to

support the whole CM process [3]. Moreover, these systems

usually work in isolation, resulting in rework and inconsistency. If
they work together, they could support the CM process more

effectively. However, for integrating them, the systems need to

share a common conceptualization.

In respect to integration dimensions, Izza [4] points out, among

others, three layers: data integration deals with how the
applications share data; service integration addresses how

applications share services; finally, process integration views the

enterprise as a set of interrelated processes and it is responsible
for handling message flows, and defining the overall process

execution. Thus, semantic integration encompasses the intended

meaning of concepts, services and processes [4]. Thus, to achieve
semantic integration, it is essential that the parties share a

common understanding regarding the CM universe of discourse,

including both its concepts and tasks. However, in general, there
is a lack of understanding even regarding the key concepts related

to CM, and as a consequence, there is not a consensus of the

semantics of CM terms yet. This may hinder the achievement of
semantic integration and communication between systems

supporting the CM process.

In this context, ontologies can be used as an inter-lingua to map

concepts and services used by different tools, in a scenario of
access to data and services via a shared ontology [5]. An ontology

is a formal representation of a common conceptualization of a

universe of discussion [6]. Several authors consider that
ontologies are at the heart of the modern approaches for semantic

integration [4]. Ontologies can focus on describing the concepts

of a domain (domain ontologies) or describing general tasks (task
ontologies) that are independent of domain. A large amount of

domain ontologies have been used in various fields [7], including

software CM [8]. Despite the increasing use of domain
ontologies, the same does not occur with task ontologies [9].

However, in semantic integration, we should also consider

behavioral knowledge. In service and process layers of
integration, task ontologies can be used to assign semantics to

services, functionalities, activities, and its related information,

helping achieving semantic integration.

This paper presents a task ontology for the CM process. This task

ontology is used as a reference model for semantically integrating
CM systems in service and process layers. The ontology focuses

mainly on change control, which is a core process for CM. The

proposed ontology aims to capture the most important information
concerning the CM process, such as concepts, relationships, tasks,

agents, inputs and outputs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SAC’12, March 25-29, 2012, Riva del Garda, Italy.

Copyright 2012 ACM 978-1-4503-0857-1/12/03…$10.00.

This paper is organized as follows. Section 2 regards the

theoretical background of the paper, discussing briefly the CM
process, the integration problem and the use of ontologies to deal

with this problem. Section 3 presents the CM task ontology.

Section 4 discusses its use in an integration scenario of CM
systems. Section 5 briefly discusses some related works. Finally,

Section 6 presents the conclusions of this paper.

2. SEMANTIC INTEGRATION AND

CONFIGURATION MANAGEMENT
Configuration management (CM) applies technical and
administrative procedures for developing, producing and

supporting the life cycle of a product. This discipline is applicable

to hardware, software, processed materials, services, and related
technical documentation. Its main goal is to control product

evolution [1].

The CM process involves activities for: (i) identifying and

documenting characteristics of a product; (ii) controlling changes;

(iii) storing and reporting information related to processing
changes and; (iv) verifying the compatibility of the changes with

the specified requirements [10].

To facilitate controlling its evolution, a product is divided into

items. An item is a generic term used to represent parts of the

product or information generated in its development. A product
item which configuration is being managed is called a

Configuration Item (CI). Changes in CIs occur through formal

procedures [1].

A CI presents different states as it evolves. A version represents a
specific state of a CI in a particular time point of the product

development [3]. The product as a whole can also have different

states called the product configuration. Configuration is usually
defined as the set of items that form the product. A baseline is a

product configuration that was revised and designated to be a

basis for future development [1, 10].

Regarding the CM process, it is presented in different ways in

different books and standards. Based mainly on [1, 2, 3, 10], the
main activities of the CM process are:

• Configuration Identification: refers to identifying
product items to be controlled (CIs), defining criteria

for selecting CIs and their versions, establishing

standards for numbering, and defining tools and
techniques to be used to control the items;

• Version control: combines procedures and tools in order

to manage different versions of the CIs;

• Change Control: deals with change management during

the product life cycle. The change control process

includes activities for: (i) requesting changes, (ii)
evaluating the change request, (iii) performing checkout

of the CIs to be changed, (iv) performing the change
itself, (v) performing the check-in of the modified items,

and (vi) verifying the changes made.

Besides these activities, the CM process has also activities that

involve CM planning, Configuration Audit and Configuration

Status Report [1, 2, 3, 10].

Managing the configuration of a product is an important and

complex task, and to be properly done, it should be supported by
a set of systems. The integration of these systems is a hard

problem. The main difficulty is that generally the systems are not

developed thinking in integration. Contrariwise, they generally
have their own data (structural) and process (behavioral) models.

This heterogeneity is pointed as one of the biggest problems in

system integration. To solve this problem, it is necessary to
resolve syntactic (related to structure) and semantics (related to

meaning) conflicts generated by this heterogeneity [4].

Semantic integration involves three main integration layers [4]:

data layer (refers to data exchange), service layer (deals with

service exchange) and process layer (responsible for combining
the systems for an adequate support to the process). To help

semantic integration, ontologies can be used to establish a

common conceptualization, explaining concepts and their
meanings, and avoiding conflicts of understanding. According to

[11], an ontology is a conceptual specification that describes the

knowledge of a universe of discourse. It defines a specific
vocabulary used to describe a certain reality and a set of explicit

decisions to establish accurately the intended meaning to this

vocabulary [6].

Guarino classifies ontologies into [6]: (i) foundational ontologies

(or top-level ontologies), which describe very general concepts,
such as space, time, object, event, action etc., (ii) domain

ontologies, which describe the conceptualization related to a
generic domain (for instance, medicine, law, and so on), (iii) task

ontologies, which describe the conceptualization related to a

generic task (such as diagnosis and sale), and (iv) application
ontologies that describe concepts dependent on a particular

domain and task. Domain ontologies have been widely used in

various areas of computer science, but the same does not occur
with task ontologies [9].

Task knowledge involves two major kinds of knowledge that
should be captured by a task ontology [9]: (i) task decomposition,

including control flow, and (ii) knowledge roles played by entities

from the domain in the fulfillment of the task. These kinds of
knowledge are very inter-related, although they capture different

views of a task. In fact, they represent different modeling aspects,

i.e. different dimension of modeling that emphasizes particular
views of the same portion of the reality. Thus, we need different

models for representing them [9]. Martins and Falbo [9] proposed

the use of two UML diagrams for representing task ontologies:
activity diagrams, capturing task decomposition into sub-tasks and

how knowledge roles act in their fulfillment, and class diagrams,

modeling the knowledge roles involved and their properties and
relations.

In the next section, we present a task ontology that describes
aspects of these both perspectives regarding the CM process. It is

worthwhile to point out that, although we use the term “task
ontology”, which is already consecrated in the field of ontologies,

in fact we are talking about a process ontology, in the sense that

we are interested in describing the CM process as a whole, and
not tasks with low granularity level. Moreover, albeit our

ontology focus on the CM’s change control sub-process, we

decided to name it a CM task ontology, because we also consider
some activities and concepts that are part of the version control

sub-process. However, due to space limitations, in this paper we

present only the core of our ontology.

Finally, we should emphasize that our approach to semantic

integration is focused on the conceptual level, as advocated in
[12]. Thus, our ontology is a reference ontology, i.e., an ontology

that is constructed with the sole objective of making the best

possible description of the universe of discourse, with regard to a
certain level of granularity and viewpoint [11]. A reference

ontology is a special kind of conceptual model representing a

model of consensus within a community. It is a solution-
independent specification with the aim of making a clear and

precise description of entities in the universe of discourse, for the

purposes of communication, learning and problem-solving. We
are not interested in an implementation of this ontology for

purposes of reasoning, for instance.

3. A CM TASK ONTOLOGY
As a process ontology, we are interested in answering the
following competency questions with our CM Task Ontology

(CMTO): (i) Which are the activities of the CM process? (ii) Who

is responsible for performing these activities? (iii) How these
activities are decomposed into sub-activities? (iv) What is the

control flow between them? (v) What are the inputs and outputs of

each activity?

Following the guidelines given in [9], for capturing the

conceptualization involved in the CM process, we developed two
conceptual models. The first is a structural conceptual model

capturing the knowledge roles involved in the CM process. The

second is a behavioral model capturing the activities of the CM
process and related aspects.

Figure 1 shows the main knowledge roles involved in the CM
process. This model is built in OntoUML, a UML profile that

captures some distinctions done in the Unified Foundational

Ontology – Part A (UFO-A) [7]. By using this notation, we are
showing the use of UFO as a foundational ontology for grounding

our CMTO, as advocated by Guarino [6] and Guizzardi and

colleagues [13].

Item represents the elements that compose a product (or even the

product itself). Item is a category in UFO, since it represents
different kinds of elements. When an item is submitted to

configuration management, it is said to be a Configuration Item

(CI). Thus, CI is a role (more precisely a role mixin in UFO)

played by an item due to the fact that it has being submitted for

CM, during a “Identify Configuration” activity (not shown in

Figure 1). A CI can be composed of other CIs (Composite CI) or

not (Atomic CI). A CI is characterized by Versions. Each version

represents a specific state in the evolution of the CI. Version is
represented as a property (mode, in UFO) of a CI, since it is

intrinsically dependent on it. Configuration is a specific type of
version that is composed of other versions. Some configurations

play the role of Baseline. A baseline is generated when a

configuration manager labels a configuration as a baseline in a
“Define Baseline” activity (not shown in Figure 1). Finally,

concerning the relations shown in Figure 1, the parthood

relationships between Composite CI and CI, and between
Configuration and Version are both of the type component of in

UFO. In both cases, the parts are shareable, since a version can be

part of different configurations, as well as a CI can be part of
different composite CIs. The relationship between CI and

Version, and the ones specialized for their subtypes, are

characterization relations, occurring between modes (versions)

and the objects (CIs) they characterize.

Figure 1. Main knowledge roles involves in the CM Process.

Figure 2 shows the knowledge roles involved in the Change

Control sub-process. This model mainly captures the registering

of the activities that occur in the change control process. For

instance, the change control process starts with a requester

requesting changes in a set of versions. This activity gives rise to

an entity Change Request that registers the occurrence of this
activity, including the point in time (date and time) when it

occurred (not shown in Figure 2).

Figure 2. Knowledge roles involves in Change Control.

In UFO, the registering of events is done by means of relators.

Relators are entities with the power of connecting other entities

[7]. In the previous example, Change Request is a relator that

connects a Requester with the Versions she/he thinks that need to

be changed (versions to change). Relators are the foundation for
material relations, such as the relation “requires change in”

between Requester and Version. In other words, material

relations have material structure on their own. The relata of a

material relation are mediated by relators. Thus, the relationships

between a relator (e.g., Change Request) and the entities that it

connects (e.g., Requester and Version) are mediation relations

[7]. As pointed in [7], a mediation is a formal relation that takes

place between a relator and the entities it mediates.

Figure 3 presents the activity diagram used to show the activities

of the Change Control process and how the knowledge roles
shown in figures 1 and 2 act in this process. Some stereotypes

were added to capture distinctions made in UFO (Part C) [13]

concerning to the types of object participations in actions, namely:
creation, indicating that an object is created by the action;

termination, indicating that the object is destroyed by the action;

change, indicating that some property of the object changed; and
usage, when the object is used without changing any of its

properties.

As said before, the Change Control process starts with a

Requester requesting changes in a set of Versions (versions to

change). A Change Request describes a set of Changes that are

supposed to be made. Thus, a Change is a mode (in UFO) of the

Change Request, and thus the relationship between them is a
characterization relation (see Figure 2). Both the change request

and its corresponding changes are created as a result of the

“Request Change” activity.

Once a change request is made, it should be evaluated by an

Appraiser (“Evaluate Request” activity). The relator Evaluation

registers the occurrence of this activity, when the change request

and its changes are said to be evaluated. If the request is rejected,
the process finishes; otherwise, it follows to the “Implement

Change” activity.

The “Implement Change” activity is a complex activity that

involves three sub-activities, as shown in Figure 4. All these sub-

activities are performed by Developers.

Figure 4. Sub-activities of the “Implement Change” activity.

During a change implementation, first the Developer performs a

checkout, retiring the set of versions to change. These versions

are then considered retired. A checkout is performed to

implement an evaluated change that is initiated. As shown in

Figure 2, Checkout is a relator connecting three types of entities:

Developer (who performs the checkout), Change (which is

initiated), and Version (indicating the retired versions).

The next activity is “Modify Version”. In this activity, a

Developer makes modifications in each of the retired versions. A

Modification registers the occurrence of modifications in each

Version, which is considered a modified version. Thus,

Modification is a relator connecting Developer (who performs

the modification) and Version (what is modified) (see Fig. 2).

Figure 3. Behavioral Conceptual Model of the Control Change Process.

Since all the modifications have been made and the change is

completely addressed, the Developer should perform a checkin,

creating new versions based on the modified ones. Checkin is the

relator that registers the occurrence of this activity. As shown in

Figure 2, it connects four types of entities: Developer (who

performs the checkin), Change (which has been implemented),

Modification (indicating which modifications were registered)

and Version (corresponding to the new versions created).

Moreover, when a checkin occurs, the corresponding checkout is

destroyed.

Finally, after implementing a change, it must be verified. In the

“Verify Implementation” activity (Fig. 3), a Checker verifies if
the change was properly implemented. As a result, the change is

verified and the relator Verification is created, connecting the

Checker who performed the verification, and the Change that

was verified.

It is worthwhile to highlight that the structural conceptual models

of a task ontology are incomplete by their nature. They do not

represent the concrete entities that actually play the knowledge
roles shown in the model. As pointed in [7], anti-rigid entities

should be subtypes of rigid types. Since roles (in UFO) are anti-

rigid entities, the entities in CMTO that are stereotyped with

<<role>> (namely Requester, Evaluator, Developer and

Checker) must be subtypes of other entities that, in turn, are rigid

entities. For instance, if in some domain the role Requester is

played by human agents, then Requester must be a subtype of

Person (a rigid entity). However, this complement can only be
done when integrating a task ontology with a domain ontology,

giving rise to an ontology of a class of applications, when we

should identify which role a domain concept should play in the
structural model of the task ontology [9].

4. USING THE CM TASK ONTOLOGY IN

A SEMANTIC INTEGRATION EFFORT
The proposed ontology was used in a semantic integration effort

aiming at integrating Subversion (SVN) [14] and CM-ODE. The
first is a well known open-source version control system that

manages files and folders, and the changes made on them over the

time. The second is a tool supporting change management in ODE
(Ontology-based software Development Environment) [15].

The integration scenario aims to provide automated support for
part of the Software Configuration Management (SCM) process

defined at NEMO (Ontology and Conceptual Modeling Research

Group). More specifically, the following activities were
considered: Identify Configuration, Control Configuration, and

Control Change. The Control Change activity is decomposed in

the following sub-activities: Request Change, Evaluate Change
and Perform Change.

Since CM-ODE was developed at NEMO, its conceptual models
were already available. The conceptual models of SVN, on the

other hand, had to be excavated. Concerning SVN behavior, we
extract the provided services by the SVNKit (a Java Subversion

Library).

In [12], this integration scenario was already addressed, exploring

the use of the SCM domain ontology (SCMDO) proposed in [8]

to support integration, using OBA-SI (Ontology-Based Approach
for Semantic Integration). In this work, we extend the approach

adopted by using the task ontology as a reference model for

integration in service and process layers. To do that, first we had
to align and integrate our ontology (CMTO) to SCMDO,

producing an ontology of the class of applications related to SCM

(said application ontology for short). This was an important step
for resolving some open issues in the CMTO, regarding roles and

categories.

As discussed above, CMTO does not establish who plays the roles

of Requester, Evaluator, Developer and Checker. According to

SCMDO, Person (kind in UFO) plays these roles. Thus, in the

resulting application ontology, Requester, Evaluator, Developer

and Checker are subtypes of Person. Moreover, the CMTO says

nothing about which types of entities can have their configuration
managed. In SCMDO, Artifacts (category in UFO) and software

tools (kind in UFO) are those items. Thus, we introduced Artifact

and Software Tool as subtypes of Item. We also introduced some

kinds of artifacts as subtypes of Artifact, namely Source Code,

Document and Diagram. Other concepts present in the SCMDO
were also aligned to the CMTO concepts, but due to space

limitations, this alignment is not discussed here.

Using the resulting application ontology, we revised the structural

mappings done in [12]. For instance, Configuration Item (CM-

ODE) and Repository Item (SVN) were mapped to Configuration

Item (Ontology). File and Folder in SVN are types of Repository

Item. They were mapped, respectively, to Atomic CI and

Composite CI (Ontology). Besides mapping the concepts of SVN

and CM-ODE to concepts of the application ontology, we did the

same with the relationships.

After mapping the structural models, we performed the mappings

of the behavioral conceptual models of the process to be
supported, and the systems to be integrated. Table 1 illustrates the

mappings between the model elements of CMTO, NEMO’s SCM
process, SVN and CM-ODE, regarding the “Perform Checkout”

activity. Activities / services are shown in white, whereas inputs

and outputs are shown in light and dark gray, respectively. The
mapping of inputs and outputs were based on the structural

mappings previously performed.

Table 1. Behavioral Mappings: Perform Checkout

Ontology SCM Process SVN CM-ODE

Perform

Checkout

Retire CIs checkout retire_change

change: Change

[evaluated]

 ch: Change

subset versions:
Version

[to_change]

current
versions of

CIs

dir:
Repository

Folder

--

change: Change

[initiated]

 ch: Change

[retired]

subset versions:
Version

[retired]

current
versions of

CIs [retired]

copies:
Working

Copy Item

--

checkout:

Checkout

 checkout:

Checkout

ret:

Retirement

Looking for these mappings, we can notice that both the services

checkout (SVN) and retire_change (CM-ODE) can be used to

support the “Retire CIs” activity from SCM process. Moreover,
these mappings show how to map inputs and outputs for invoking

the services. These mappings guided the choice of which tools to

use in each circumstance, and how to integrate them.

5. RELATED WORK
Our first intended use of the CM task ontology was to assist in the
semantic integration of CM systems. As pointed in [4], ontologies

are at the heart of the modern approaches for semantic integration.

However, at the best of our knowledge, the existing approaches to
semantic integration use only domain ontologies. This is the case,

for instance, of ONAR, an ontology-based framework for

Enterprise Application Integration [16]. Moreover, most of the
existing approaches are too much focused on the technological

aspects of a semantic integration solution, mainly working at

extensions of the web service technology, such as ODSOI
(Ontology-Driven Service-Oriented Integration) [4], or using

semantic web technologies in order to enrich the semantics of the
exchanged information, such as [16].

6. CONCLUSIONS
More and more, task ontologies are receiving attention. However,

differently of domain ontologies, which have several works using

them, the use of task ontologies is still timid. In this paper, we
presented a task ontology that aims to capture the

conceptualization involved in the Configuration Management

process. It focuses mainly on the Change Control sub-process.

The primary purpose of the proposed CM task ontology is to

make the best possible description of the CM process, elaborating
a model of consensus within this community. It is a solution-

independent specification with the aim of making a clear and

precise description of entities in this universe of discourse, for the
purposes of communication, learning and problem-solving. To

achieve this goal, we used as sources of knowledge international
standards, such as ISO 10007 [1], books and handbooks devoted

to the subject, and some CM systems, such as SVN [14].

Moreover, experts in this universe of discourse evaluated the
resulting ontology. We looked also for ontologies describing the

CM universe of discourse, but we only found the Software CM

domain ontology presented in [8].

We believe that semantic integration has to be first addressed at

the conceptual level, as advocated by OBA-SI [12]. Furthermore,
we share Izza’s point of view that integration should consider

data, service and process layers. In this sense, the use of task

ontologies for semantic integration is a step ahead in the direction
towards service and process integration at the conceptual level.

As future work, we intend to extend OBA-SI for considering also
task ontologies as reference models for integration in service and

process layer. Moreover, we also intend to extend the coverage of

our CM task ontology, by considering other activities of the CM
process.

7. ACKNOWLEDGMENTS
This research is funded by the Brazilian Research Funding

Agencies FAPES (Process Numbers 45444080/09 and
52272362/11) and CNPq (Process Numbers 481906/2009-6 and

483383/2010-4).

8. REFERENCES
[1] International Organization for Standardization. ISO 10007:

Quality Management - Guidelines for Configuration

Management, 2003.

[2] Department of Defense of United States of America. MIL-

HDBK-61A: Military Handbook - Configuration

Management Guidance, 1997.

[3] Leon, A. A Guide to Software Configuration Management.

Artech House Publishers, Norwood, MA, 2000.

[4] Izza, S. Integration of industrial information systems: from
syntactic to semantic integration approaches. Enterp. Inf.

Syst. 3, 1 (February 2009), 1-57.

[5] Jasper, R., Uschold, M. A framework for understanding and
classifying ontology applications. Proceedings of the IJCAI-

99, Ontology Workshop (Stockholm, 1999).

[6] Guarino, N. Formal Ontology and Information Systems. In:
Formal Ontologies in Information Systems, IOS Press, 1998,

3 -15.

[7] Guizzardi, G. Ontological Foundations for Structural
Conceptual Models, Universal Press, The Netherlands, 2005.

[8] Arantes, L.O., Falbo, R.A., Guizzardi, G. Evolving a

Software Configuration Management, In Proceedings of the

2nd Workshop on Ontologies and Metamodeling Software

and Data Engineering (Brazil, 2007).

[9] Martins, A.F., Falbo, R.A. Models for Representing Task

Ontologies. In Proceedings of the 3rd Workshop on
Ontologies and Their Applications (Brazil, 2008).

[10] Institute of Electrical and Electronics Engineers. IEEE Std

610.12 - IEEE Standard Glossary of Software Engineering

Terminology, 1990.

[11] Guizzardi, G. On Ontology, ontologies, Conceptualizations,

Modeling Languages, and (Meta)Models, In Frontiers in
Artificial Intelligence and Applications, Databases and

Information Systems IV, IOS Press, Amsterdam, 2007.

[12] Calhau, R.F., Falbo, R.A. An Ontology-based Approach for

Semantic Integration, In Proceedings of the 14th IEEE
International Enterprise Distributed Object Computing

Conference (EDOC´2010) (Brazil 2010).

[13] Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S. Grounding
software domain ontologies in the Unified Foundational

Ontology (UFO): the case of the ODE software process

ontology. In Proceedings of the XI Iberoamerican Workshop
on Requirements Engineering and Software Environments

(Brazil, 2008), 244-251.

[14] Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M. Version
Control with Subversion. O'Reilly Media, 2009.

[15] Falbo, R.A., Ruy, F.B., Moro, R.D. Using Ontologies to Add

Semantics to a Software Engineering Environment. In
Proceedings of the 17th SEKE (China, 2005), 151-156.

[16] Tektonidis, D., Bokma, A., Oatley, G., Salampasis, M.

ONAR - An Ontology-based Service Oriented Application
Integration Framework, In Proceedings of the 1st

International Conference on Interoperability of Enterprise

Software and Applications, (Geneva, Switzerland, 2005),
65–74.

View publication statsView publication stats

https://www.researchgate.net/publication/241623622

