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Abstract. Multi-level modeling extends the conventional two-level classifica-

tion scheme to deal with subject domains in which classes are also considered 

instances of other classes. In the past, we have explored theoretical foundations 

for multi-level conceptual modeling and proposed an axiomatic theory for mul-

ti-level modeling dubbed MLT. MLT provides concepts for multi-level model-

ing along with a number of rules to guide the construction of sound multi-level 

conceptual models. Despite the benefits of MLT, it is still unable to deal with a 

number of general notions underlying conceptual models (including the notions 

used in its own definition). In this paper, we present an extension of MLT to 

deal with these limitations. The resulting theory (called MLT*) is novel in that 

it combines a strictly stratified theory of levels with the flexibility required to 

model abstract notions that defy stratification into levels such as a universal 

“Type” or, even more abstract notions such as “Entity” and “Thing”. 

Keywords: Conceptual Modeling, Multi-level Modeling, Metamodeling. 

1 Introduction 

The vast majority of conceptual modeling techniques are based on notions such as 

“class” and “type”, capturing what subject matter experts refer to as “kinds”, “catego-

ries” and “sorts” in their accounts of a subject domain. In several subject domains, the 

categorization scheme itself is part of the subject matter, and thus experts make use of 

categories of categories in their accounts. For instance, considering the software de-

velopment domain [15], project managers often need to plan according to the types of 

tasks to be executed during the software development project (e.g. “requirements 

specification”, “coding”). They may also need to classify those types of tasks giving 

rise to types of types of tasks. In this case, “requirements specification” and “coding” 

could be considered as examples of “technical task types”, as opposed to “manage-

ment task types”. Finally, during project development, they need to track the execu-

tion of individual tasks (e.g. specifying the requirements of the system X). Thus, to 

describe the conceptualization underlying the software development domain, one 

needs to represent entities of different (but nonetheless related) classification levels, 
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such as tasks (specific individual occurrences), types of tasks, and types of types of 

tasks. Other examples of multiple classification levels come from domains such as 

that of organizational roles (or professional positions) [8], biological taxonomy [26] 

and artifact types (e.g., product types) [29].  

These subject domains require us to break the two-level divide between classes and 

instances, admitting classes that are also instances of other classes, and suggesting 

that there could be a multitude of classification „levels‟ or meta-levels. The need to 

support the representation of subject domains dealing with multiple classification 

levels has given rise to what has been referred to as multi-level modeling [21]. Tech-

niques for multi-level conceptual modeling must provide modeling concepts to deal 

with types in various levels and the relations that may occur among them. In the last 

decades, several approaches for the representation of multi-level models have been 

worked out, including those mostly focused on multi-level modeling from a model-

driven engineering perspective (e.g. [14, 23]) and those that propose modeling lan-

guages for models with multiple levels of classification (e.g. [3, 22]). These ap-

proaches embody conceptual notions that are key to the representation of multi-level 

models, such as the existence of entities that are simultaneously types and instances, 

the iterated application of instantiation across an arbitrary number of (meta)levels, the 

possibility of defining attributes and values at the various type levels, etc. 

Despite the recent advances in multi-level modeling approaches and tools, the lit-

erature on multi-level modeling still lacks a language-independent formal theory that 

captures the foundational concepts underlying multi-level modeling. We believe that 

such a theory could facilitate the identification of the characterizing features a multi-

level approach should possess, being useful to support the proposal of well-founded 

multi-level modeling approaches. Further, it could be used as a foundation to clarify 

the semantics of existing approaches as well as to relate and harmonize different ap-

proaches to multi-level modeling.  

In the past, the search for such a theory has led us to propose the MLT multi-level 

modeling theory [10]. MLT is founded on a basic instantiation relation and character-

izes the concepts of individuals and types, with types organized in „orders‟ and related 

by instantiation. MLT has been used successfully to analyze and improve the UML 

support for modeling the powertype pattern [11], to uncover problems in multi-level 

taxonomies on the Web [6], to found an OWL vocabulary that supports the represen-

tation of multi-level vocabularies in the Semantic Web [5], and to provide conceptual 

foundations for dealing with types at different levels of classification both in core [8] 

and in foundational ontologies [9]. 

While the theory has been fruitful for these applications, it is unable to account for 

types that defy a strict stratification scheme. This rules out abstract and general types 

such as “Entity” and “Type” (which are instances of themselves). We have observed 

that these types correspond to general notions that are ubiquitous in comprehensive 

conceptualizations (see e.g., the core of the Semantic Web with the notion of “Re-

source” or “Thing” ([31, 32]), (Foundation) Ontologies such as UFO ([16]), Cyc 

([13]), DOLCE and BFO ([25]) with their notions of “Entity” or “Thing”, Telos ([28]) 

with the notions of “Property”). Failure to account for such types restricts the general-

ity of the theory, which motivates us to extend it. 



3 

This paper presents MLT*, which extends MLT with a focus on improving its gen-

erality. The theory is formally defined through axiomatization in first-order logic, 

building up on a primitive instantiation relation. In order to account for types that defy 

a strict classification scheme, we introduce the notions of orderless and ordered types. 

We precisely define the relations that may occur between orderless and ordered types, 

and define rules that apply to these relations. We show that the two-level scheme and 

the strictly stratified schemes are special cases allowed by the theory. We further 

show how MLT* is general enough to account for the types that are used in its own 

definition. We aim to provide a theory that is comprehensive enough as a semantic 

foundation for various multi-level modeling techniques. 

All definitions of MLT* have been specified and tested with the support of Alloy 

[19]. Alloy allows the specification of first-order logic based models and supports 

model simulation (model finding) and verification (model checking) through exhaus-

tive search in finite models. The rules that arise from the definitions and axioms in 

MLT* have been defined as assertions and verified in Alloy
1
. 

This paper is further structured as follows: section 2 presents requirements for a 

comprehensive theory for multi-level modeling; section 3 presents MLT*, addressing 

the set of requirements defined in section 2; section 4 discusses the implications of the 

theory to the practice of multi-level conceptual modeling and finally section 5 pre-

sents concluding remarks and topics for further investigation. 

2 Requirements for a Comprehensive Multi-Level Theory 

We establish here key requirements for a theory on multi-level modeling, substantiat-

ing these requirements with sources from the literature on multi-level modeling and 

justifying them based on the nature of multi-level phenomena. 

First of all, an essential requirement for a multi-level modeling theory is to account 

for entities of multiple classification levels, which are related through chains of instan-

tiation between the involved entities (requirement R1). This means that the theory 

must admit entities that represent both types (class) and instances (object) simultane-

ously [1], diverging thereby from the traditional two-level scheme, in which classifi-

cation (instantiation) relations are only admitted between classes and individuals. 

The size of chains of instantiation may vary according to the nature of the phenom-

ena being captured and according to the model purposes. Because of this, a general-

purpose theory should admit an arbitrary number of classification levels (R2) (includ-

ing the two-level scheme as a special case). The ability to deal with an arbitrary num-

ber of levels is identified as a key a requirement by many authors (e.g., see [14] and 

[3]). Several examples of three and four level models are available in the literature as 

well as in structured data repositories such as Wikidata (in which there are more than 

17,000 classes involved in multi-level taxonomies [6]). 

Further, in previous work, some of us have found empirical evidence to support the 

claim that representations capturing chains of instantiation can benefit greatly from 

                                                           
1  See https://github.com/nemo-ufes/mlt-ontology. 
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rules for organizing entities into levels [6]. We have found that over 87% of the clas-

ses in multi-level taxonomies in Wikidata were involved in errors that could have 

been prevented with some support to detect the inadequate use of instantiation (and its 

combination with subtyping) [6]. Based on this evidence, we consider that a multi-

level modeling theory should define principles (rules) for the organization of entities 

into levels (R3). An example of this sort of principle, which is adopted in some prom-

inent multi-level modeling approaches, is the so-called strict metamodeling principle 

[1], which prescribes the arrangement of elements into levels mandating that elements 

of a level only instantiate elements of the level immediately above. 

While these principles are intended to guide the modeler in producing sound mod-

els, they should not obstruct the representation of genuine multi-level phenomena. 

The strict metamodeling principle, for example, excludes from the domain of enquiry 

abstract notions such as a universal “Type” or, an even more abstract notion such as 

“Thing”. This is because their instances may be related in chains of instantiation, 

conflicting with the stratification imposed by the principle. Given that these general 

notions are ubiquitous in comprehensive conceptualizations (see e.g., the core of the 

Semantic Web with the notion of “Resource” or “Thing” ([31, 32]), (Foundation) 

Ontologies such as UFO ([16]), Cyc ([13]), DOLCE and BFO ([25]) with their no-

tions of “Entity” or “Thing”, Telos ([28]) with the notions of “Property”), we con-

clude that a comprehensive multi-level modeling theory should admit types that defy 

a strictly stratified classification scheme (R4) (with the general notion of “type” or 

“class” and the universal notion of “entity” or “thing” as paradigmatic special cases). 

Finally, an important characteristic of domains spanning multiple levels of classifi-

cation is that there are domain rules that apply to the instantiation of types of different 

levels. For example, in a conceptual model encompassing the notions of “Dog Breed” 

and “Dog”, all instances of “Dog Breed” (e.g. “Collie” and “Beagle”) are types whose 

instances are instances of “Dog”. Hence, in this setting, instances of “Dog Breed” 

specialize “Dog”. Given the recurrence of this kind of scenario [24], which in the past 

motivated the powertype pattern [30], a comprehensive multi-level modeling theory 

should be able to account for the rules that govern the instantiation of related types at 

different levels (R5).  

3 MLT*: A Theory for Multi-Level Modeling 

This section presents MLT* showing how it satisfies the requirements defined in 

section 2. Section 3.1 describes basic notions of the theory (in order to satisfy re-

quirements R1 and R2); section 3.2 discusses how types can be organized into strictly 

stratified levels (addressing R3); section 3.3 accounts for types that defy the rigid 

stratification scheme (addressing R4); finally, section 3.4 discusses the various struc-

tural relations that can be established between types (addressing R5). Throughout the 

sections we discuss the rules that arise from the formalization of the theory. 
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3.1 Basic Notions 

The notions of type and individual are central for our multi-level modeling theory. 

Types are predicative entities that can possibly be applied to a multitude of entities 

(including types themselves). Particular entities, which are not types, are considered 

individuals. Each type is characterized by an intension, which is used to judge wheth-

er the type applies to an entity (e.g., whether something is a Person, a Dog, a Chair) 

(it is also called principle of application in [16]). If the intension of a type t applies to 

an entity e then it is said that e is an instance of t. Thus, the instance of relation (or 

instantiation relation) maps a type to the entities that fall under the type. The set of 

instances of a type is called the extension of the type [17]. We assume that the theory 

is only concerned with types with non-trivially false intensions, i.e., with types that 

have possible instances in the scope of the conceptualization being considered. 

MLT* is formalized in first-order logic, quantifying over all possible individuals 

and types in a subject domain. The theory is built up from the instantiation relation, 

which is formally represented by a binary predicate iof(e,t) that holds if an entity e is 

instance of an entity t (denoting a type). For instance, the proposition iof(John,Person) 

denotes the fact that “John” is an instance of the type “Person”. Note that here we do 

not account for modal or temporal aspects of instantiation; see [10] for a treatment of 

modal aspects where instantiation is „world-indexed‟ and represented with a ternary 

predicate.  

Using the iof predicate, we can define the ground notion of individual (D1). An en-

tity is an individual iff it does not possibly play the role of type in instantiation rela-

tions. Conversely, an entity is a type iff it plays the role of type in instantiation rela-

tions, i.e., if there is some (possible) entity which instantiates it (D2). Definitions D1 

and D2 create a dichotomy with all elements in the domain of quantification being 

considered either types or individuals. 

                                  (D1) 

                           (D2) 

We assume that all types are ultimately grounded on individuals (A1). Thus the tran-

sitive closure of the instantiation relation (iof'), always leads us from a type to one or 

more individuals: 

                                           (A1) 

Note that the definitions so far allow us to satisfy R1, as we place no restrictions on 

the kinds of entities that may instantiate a type. Thus, the theory would admit a model 

such as the one illustrated in Fig. 1. The figure depicts a chain of instantiation, with 

“Man” and “Woman” instantiating “PersonTypeByGender”, and “John” and “Bob” 

instantiating “Man”, while “Ana” instantiates “Woman”. We use a notation inspired 

in the class and object notations of UML, and we use dashed arrows to represent rela-

tions that hold between the elements, with labels to denote the relation that applies (in 

this case instance of). This notation is used in all further diagrams in this paper. It is 

important to highlight here that our focus is not on the syntax of a multi-level model-
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ing language and we use these diagrams to illustrate the concepts intuitively. Further, 

no constraint is placed on the size of instantiation chains, and thus, the theory would 

admit a model such as the one illustrated in Fig. 2 (satisfying R2). 

 

Fig. 1. An instantiation chain, where “Man” and “Woman” are both instances and classes. 

 

Fig. 2. A four-level instantiation chain with representing a biological domain. 

We define some basic structural relations, starting with the ordinary specialization 

between types. A type t specializes another type t’ iff in all possible instances of t are 

also instances of t’. According to this definition every type specializes itself. Since 

this may be undesired in some contexts, we define the proper specialization relation 

in which t proper specializes t’ iff t specializes t’ and t is different from t’. 

                                                                (D3) 

                                                                 (D4) 

We consider two types equal iff the sets of all their possible instances are the same 

[10]
2
. This definition of equality only applies to elements which are not individuals, 

hence the „guard‟ conditions on the left-hand side of the implication: 

                                                              (D5) 

Building up on the specialization definition, we can now address the notion of 

powertype. Here we employ the seminal notion proposed by Cardelli [7]. According 

to [7], the same way specializations are intuitively analogous to subsets, power types 

can be intuitively understood as powersets. The powerset of a set A, is the set whose 

elements are all possible subsets of A including the empty set and A itself. Thus, “if 

A is a type, then Power(A) is the type whose elements are all the subtypes of A” (in-

cluding A itself) [7]. Following Cardelli‟s definition, we define that a type t1 is power 

                                                           
2
  See [10] for a refinement of identity and specialization concerning modal distinctions. 
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type of a type t2 iff all instances of t1 are specializations of t2 and all possible special-

izations of t2 are instances of t1. In this case, t2 is said the base type of t1: 

                                                       

                       (D6) 

Given the definition of power type, it is possible to conclude that each type has at 

most one power type (theorem T1) and that each type is power type of, at most, one 

other type (theorem T2). (These theorems are proved in [10], which suggests a con-

crete syntactic constraint for a multi-level model: only one higher-order type can be 

linked to a base type through the is power type of relation.). 

                                                            (T1) 

                                                            (T2) 

3.2 Accounting for Stratification into Orders 

Note that, thus far, the theory does not impose a principle of organization for the enti-

ties into (strictly stratified) „levels‟. In order to account for such kinds of principles, 

we use the notion of type order. Types whose instances are individuals are called first-

order types. Types whose instances are first-order types are called second-order 

types. Those types whose extensions are composed of second-order types are called 

third-order types, and so on.  

Types that follow this strictly ordered scheme are called ordered types. To define 

such a scheme formally, we define a notion of „basic type‟. A basic type is the most 

abstract type in its type order. For example, “Individual” is a basic type since it is the 

most abstract of all first-order types, classifying all instances of first-order types, i.e., 

all possible individuals. We define the constant “Individual” as follows: 

                                                (A2) 

Like “Individual”, there are basic types for each subsequently higher order, i.e., every 

instance of the basic type of an order i (i>1) specialize the basic type of the order 

immediately below (i-1). This is formalized by D7. (Note that i is only used to im-

prove the intuition in the definition, and is not formally a variable.) 

                                                           

                                                                      (D7) 

A consequence of this definition of basic type is that the basic type of an order i (i>1) 

is the powertype of the basic type at the order immediately below (i-1), showing that 

the basic types are formed by the cascaded application of the powertype pattern. This 

is reflected in the following theorem (T3), which is the result of applying D6 to D7: 
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                                                  (T3) 

Every ordered type that is not a basic type (e.g., a domain type) is an instance of one 

of the basic higher-order types (e.g., “1stOT”, “2ndOT”), and, at the same time proper 

specializes the basic type at the immediately lower level (respectively, “Individual” 

and “1stOT”). Fig. 3 illustrates this pattern. Since “Person” applies to individuals, it is 

instance of “1stOT” and proper specializes “Individual”. The instances of “Person-

TypeByGender” are specializations of “Person” (e.g. “Man” and “Woman”). Thus, 

“PersonTypeByGender” is instance of “2ndOT” and proper specializes “1stOT”. 

 

Fig. 3. Illustrating an important basic pattern of MLT and its intra-level structural relations. 

Note that, the ellipsis in the left-hand side of the figure indicates that the theory ad-

mits an unbound number of higher-order basic types. Nevertheless, we have been 

careful not to necessitate the existence of such types in the theory. This means that the 

theory has finite models, and thus can be subject to analysis using a finite model 

checker/finder such as Alloy, which we have employed for verification of all theo-

rems discussed here.  

Having defined the structure of basic types we can define ordered type as a type 

that specializes one of the basic types (D8). Conversely, we can define orderless types 

as in D9. 

                                                       (D8) 

                                               (D9) 

We can account now for a strictly stratified scheme. In this case, it would suffice to 

add an axiom stating that all types are ordered types, which would rule out types 

whose instances belong to different orders. The stratified scheme is thus a restriction 

of the more general theory we have, which admits orderless types. 

Moreover, we can see that the theory can be further constrained to account for the 

two-level scheme as a particular case. For a two-level theory it would suffice to add to 

the strictly stratified scheme an axiom stating that there is a unique basic type (which 

would be “Individual”). 
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3.3 Beyond Strictly Stratified Types 

While a strictly stratified approach imposes a useful principle of organization for 

entities in multi-level models, it rules out types whose instances transcend this strict 

structure, i.e., types that have instances belonging to different levels or strata. For 

example, consider the type whose instances are all types admitted (“Type”). This type 

itself defies stratification into orders, since its instances are types at various different 

orders (e.g., “Lion”, “Species”, “Taxonomic Rank”, etc.).  

In order to capture the strictly stratified scheme while still guaranteeing the gener-

ality of the theory, we distinguish types into “OrderedType” (A3) and “Order-

lessType” (A4). Instances of “OrderedType” are those types that fall neatly into a 

particular order. Instances of “OrderlessType” are those types whose instances belong 

to different orders. This constitutes a dichotomy, and together, “OrderedType” and 

“OrderlessType” form the notion of “Type” (A5), which classify all possible types. In 

their turn “Type” and “Individual” (A2) together form the universal notion of “Entity” 

(A6), which classify all possible entities (types and individuals). 

                                                (A3) 

                                                    (A4) 

                                    (A5) 

                            (A6) 

The classification scheme formed by MLT* is presented in Fig. 4. A number of inter-

esting observations can be made about the top-layer of MLT*. First of all, MLT*, 

differently from MLT, is able to account for the types used in its definition. All enti-

ties admitted are instances of “Entity”, including all possible types and all possible 

individuals. All possible types are instances of “Type” and ultimately specializations 

of “Entity” (since their instances are entities). “Type” is thus the powertype of “Enti-

ty”. All elements added in MLT* are instances of “OrderlessType”, including (curi-

ously) “OrderedType” (since its instances are types at different orders). 

 

Fig. 4. MLT* classification scheme. 
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The instantiation relation has the following logical properties as a consequence of 

the definitions and axioms of the theory: whenever instantiation involves solely or-

dered types, it is irreflexive, antissymetric and antitransitive, leading to a strict strati-

fication of types. When instantiation involves any orderless types, none of these prop-

erties can be asserted, as there are situations in which it is reflexive (e.g., “Type” is 

instance of itself), symmetric (e.g., “Entity” is instance of “Type” and vice-versa) as 

well as transitive (e.g., “OrderedType” is instance of “Type” which is instance of 

“Entity” and “OrderedType” is also instance of “Entity”). Further, an orderless type is 

never an instance of an ordered type. These characteristics of instantiation can be used 

to rule out models that violate the theory. 

Table 1 summarizes the rules that concern which types of entities may be related 

through structural relations along with the logical properties of these relations. 

Table 1. Summary of constraints on MLT* relations. 

Relation (t → t’) Domain Range Constraint Properties 

specializes(t,t') 

Orderless Orderless 

if t and t' are ordered types, they 
must be at the same type order 

Reflexive, 

antissymetric, 
transitive 

Ordered Orderless 

Ordered Ordered 

properSpecializes(t,t') 

Orderless Orderless Irreflexive, 
antissymetric, 

transitive 

Ordered Orderless 

Ordered Ordered 

isPowertypeOf(t,t') 

Orderless Orderless 
t cannot be a first-order type if t 

and t' are ordered types, t must 
be at a type order immediately 

above the order of t’ 

Irreflexive, 

antissymetric, 

antitransitive Ordered Ordered 

 

The notion of “Orderless Type” is useful not only for the domain-independent entities 

forming MLT*, but also for general notions in specific subject domains. Consider, for 

example, the domain of social entities in which a “Social Entity” is defined as an 

entity that is created by a social normative act. Instances of “Social Entity” include 

specific states of Brazil (individuals) such as “Rio de Janeiro” and “Espírito Santo”, 

but also the first-order type “State” of which “Rio de Janeiro” and “Espírito Santo” 

are instances. As “SocialEntity” has instances at different orders (types and individu-

als), it is an instance of “OrderlessType”, as shown in Fig. 5. The example also high-

lights that MLT* allows entities to have multiple instantiation relations. “RioDeJanei-

ro” and “EspíritoSanto”, are both instances of “SocialEntity” and “State”. Moreover, 

multiple specializations are also allowed in MLT*. In this sense, MLT* differs from a 

number of approaches in literature which limit these structural relations to a single 

class (see [24]).  

The same mechanism that allows us to model bona fide self-instantiating types 

such as “Entity” and “Type” would permit a modeler to introduce paradoxical types, 

such as the type of all types that are not self-instantiated (the so-called Russellian 

property, due to Russell [18]). This type is paradoxical since it is both an instance and 

not an instance of itself. Note that this possibility does not threaten the overall con-

sistency of the theory. This is because we do not assume in MLT* that there are types 

corresponding to any expressible unifying condition (i.e., we do not assume that given 

an arbitrary logical condition F, we can define the type with extension [x | F(x)]). 
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Types here, instead, are explicitly recognized entities describing intentionally identi-

fied properties shared by their instances. Lacking the ability to prove or introduce the 

existence of types in this sense, we are under no threat of such paradoxes [27]. 

 

Fig. 5. Example of orderless type in domain model. 

3.4 Cross-level Structural Relations 

So far, the only cross-level structural relations we have considered is Cardelli‟s pow-

er type relation. Another definition of power type that has had great influence in the 

literature was proposed by Odell [30]. In order to satisfy R5, and account for the vari-

ations of the power type pattern in the literature, MLT* defines the categorization 

cross-level relation based on Odell‟s notion power type.  

A type t categorizes a type t’ iff all instances of t are proper specializations of t’. 

Note that, differently from the is powertype of relation (due to Cardelli), t’ is not an 

instance of t, and further not all possible specializations of t’ are instances of t. For 

instance, “EmployeeType” (with instances “Manager” and “Researcher”) categorizes 

“Person”, but is not the powertype of “Person”, since there are specializations of “Per-

son” that are not instances of “EmployeeType” (“Child” and “Adult” for example). 

MLT* also defines some variations of the categorization relation. A type t com-

pletely categorizes a type t’ iff every instance of t’ is instance of at least one instance 

of t. Moreover, a type t disjointly categorizes a type t’ iff every instance of t’ is in-

stance of at most one instance of t. Further, t partitions t’ iff every instance of t’ is 

instance of exactly one instance of t. For example, “PersonTypeByGender” partitions 

“Person” into “Man” and “Woman”, and thus each instance of “Person” is either a 

“Man” or a “Woman” and not both. “EmployeeType” incompletely categorizes “Per-

son”, and thus there are persons that are not instances of “Manager”, “Researcher” (or 

any other possible instance of “EmployeeType”). This kind of constraint is usually 

represented in UML through a generalization set, see [10] for a detailed comparison. 

Rules concerning the types of entities that may be related through the variations of 

categorization and the logical properties of these relations are summarized in Table 2. 
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Table 2. Summary of constraints on MLT* categorization relations. 

Relation (t → t’) Domain Range Constraint Properties 

categorizes(t,t') 

disjointlyCategorizes(t,t') 

Orderless Orderless 
t cannot be a first-order type 

if t and t' are ordered types, t 

must be at a type order 

immediately above the order of t’ 

Irreflexive, 

antissymetric, 
nontransitive 

Ordered Orderless 

Ordered Ordered 

completelyCategorizes(t,t') 

partitions(t,t') 

Orderless Orderless Irreflexive, 
antissymetric, 

antitransitive Ordered Ordered 

4 Implications for Multi-Level Modeling Approaches 

We have observed in the literature that multi-level approaches often opt for one of 

two extremes: (i) to define relations that support the representation of instantiation 

chains, without necessarily binding a type to some level (what is referred to as a level-

blind approach in [4], e.g., Kernel [12]), or (ii) to consider all classes to be strictly 

stratified. Some approaches that opt for (i) are able to account for all types which can 

be admitted by MLT*, however, they fail on providing rules to guide the use of the 

various structural relations (including instantiation). As shown in [6], this lack of 

guidance has serious consequences for the quality of the resulting representation.  

Approaches that opt for the other end of the spectrum (ii), lack support to a number of 

important abstract notions, including those very general notions that are used to artic-

ulate multi-level domains (such as “types”, “clabjects”, “entities”). This is the case of 

Melanee [3] and MetaDepth [22]. The combination of both approaches in our theory 

places it in a unique position in multi-level modeling approaches. 

A few other knowledge representation approaches (such as Telos [20] and Cyc 

[13]) have, like MLT*, drawn distinctions between orderless and ordered types. Dif-

ferently from MLT*, however, Telos does not provide rules for the various structural 

relations, including instantiation and specialization. (Mechanisms to address R5 in 

Telos were added with the notion of MGI in Deeptelos [21].) In its turn, Cyc, which 

employs a conceptual architecture for types that is most similar to MLT*‟s top layer, 

includes rules for instantiation and specialization [13]. However, it does not address 

the cross-level relations (and associated rules) we discuss here. 

MLT* shows that there is no dilemma between requirements R3 (to define princi-

ples for the organization of entities into levels) and R4 (to admit types that defy a 

strictly stratified scheme). It suggests the possibility of extending existing multi-level 

approaches that currently meet R3 but fail to meet R4 in order to meet both. For ex-

ample, extensions of Melanee and MetaDepth could be worked out to allow some 

kind of selective stratification, beyond what is currently supported with the so-called 

star potency, in order to fully enable the representation of orderless types.  

Further, since MLT* reveals that there is no inconsistency between powertype and 

clabject-based approaches, we consider it possible to extend clabject-based approach-

es such as Melanee and MetaDepth to support the representation of MLT* cross-level 

relations (in order to satisfy R5). Finally, we consider it possible to extend Deeptelos 

by including variations of the so-called MGI mechanism to capture the MLT* cross-

level relations (and thereby fully address R5 in Deeptelos).  
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5 Conclusions and Future Work 

In this paper, we have proposed a multi-level modeling theory that can account for the 

classification scheme underlying current multi-level modeling approaches. We have 

aimed for a simple but comprehensive approach in that it encompasses stratified and 

non-stratified schemes, and is able to accommodate the variations for the powertype 

pattern in the literature. We should stress that it is not our intention in this paper to 

propose a multi-level language, and that our use of a notation inspired in UML has 

been solely illustrative. As discussed in [16], a reference theory can be used to inform 

the revision and redesign of a modeling language, not only through the identification 

of semantic overload, construct deficit, construct excess and construct redundancy, 

but also through the definition of modeling patterns and semantically-motivated syn-

tactic constraints. Thus, a natural application for MLT* is to inform the design of a 

well-founded multi-level conceptual modeling language or to promote the redesign of 

a language such as UML into a multi-level modeling language. This is the subject of 

ongoing research which will be reported soon. 

Due to space limitations, we have not been able to address here the use of features 

(attributes and associations). In a multi-level context, since types are also instances, 

feature assignment in types becomes relevant, along with relations between features 

across different levels. Some of us have already addressed this issue previously [10] 

using the notion of „regularity feature‟ in MLT, however, revisiting the notion in light 

of MLT* is still the subject of further investigation. This is particularly important to 

account for the deep characterization mechanisms in potency-based approaches [2]. 
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