
“Is it a Fleet or a Collection of Ships?”: Ontological Anti-
Patterns in the Modeling of Part-Whole Relations

Tiago Prince Sales1,2 and Giancarlo Guizzardi3,4

1 Dept. of Information Engineering and Computer Science, University of Trento, Italy
2 Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy
3 NEMO Group, Federal University of Espírito Santo, Brazil

4 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
tiago.princesales@unitn.it, gguizzardi@unibz.it

Abstract. Over the years, there is a growing interest in employing theories from
philosophical ontology, cognitive science and linguistics to devise theoretical,
methodological and computational tools for information systems engineering, in
general, and for conceptual modeling, in particular. In this paper, we discuss
one particular kind of such tools, namely, ontological anti-patterns. Ontological
anti-patterns are error-problem modeling structures that can create a deviation
between the possible and the intended interpretations of a model. In this paper,
we present two empirically elicited ontological anti-patterns related to the mod-
eling of part-whole relations. In particular, these anti-patterns identify possible
mistakes in the modeling of collectives (complex entities that have a uniform
role-based structure) and functional complexes (complex entities composed of
functional parts). Besides identifying these anti-patterns, the paper presents a
series of rectification plans that can be used to eliminate their occurrence in
models. Finally, we present a model-based computational tool that supports the
automated detection, analysis and elimination of these anti-patterns.

Keywords: Ontology-Based Conceptual Modeling, Anti-Patterns, Parthood.

1 Introduction

In recent years, there has been an increasing interest in the application of ontologies in
conceptual modeling, including the use of foundational ontological theories to im-
prove the theory and practice of this discipline [1,2]. In these scenarios, ontological
theories can play a fundamental role in improving the quality of enterprise-wide con-
ceptual models, improving their quality as artifacts supporting communication, prob-
lem-solving, meaning negotiation and, chiefly, semantic interoperability in its various
manifestations (e.g., enterprise application integration) [3].

Given the increasing complexity of ontology-driven conceptual modeling, there is
an urging need for developing a new generation of complexity management tools for
this discipline [1,4]. These include a number of methodological and computational
tools that are grounded on sound ontological foundations. In particular, as defended in
[1], we should advance in these disciplines a well-tested body of knowledge in terms

2

of Ontology Patterns, Ontology Pattern Languages and Ontological Anti-Patterns.
This article focuses on the latter.

An anti-pattern is a recurrent error-prone modeling decision [5]. In this paper, we
are interested in one specific sort of anti-patterns, namely, model structures that, albeit
producing syntactically valid conceptual models, are prone to result in unintended
domain representations. In other words, we are interested in configurations that, when
used in a model, will typically cause the set of valid (possible) instances of that model
to differ from the set of instances representing intended state of affairs in that domain
[1,6]. Such a difference occurs either because the model allows unintended model in-
stances or because it forbids intended ones. We name these configurations Ontologi-
cal Anti-Patterns.

In this article, we focus on the study of Ontological Anti-Patterns in a particular
conceptual modeling language named OntoUML [7]. OntoUML is a language whose
meta-model has been designed to comply with the ontological distinctions and axio-
matization of a theoretically well-grounded foundational ontology named UFO (Uni-
fied Foundational Ontology) [7,8]. UFO is an axiomatic formal theory based on theo-
ries from Formal Ontology in Philosophy, Philosophical Logics, Cognitive Psycholo-
gy and Linguistics. OntoUML has been successfully employed in several industrial
projects in different domains, such as petroleum and gas, digital journalism, complex
digital media management, off-shore software engineering, telecommunications, retail
product recommendation, and government [8]. A recent study shows that UFO is the
second-most used foundational ontology in conceptual modeling and the one with the
fastest adoption rate [2]. Moreover, the study also shows that OntoUML is among the
most used languages in ontology-driven conceptual modeling (together with UML,
(E)ER, OWL and BPMN).

This article can be seen as complementary to our earlier work in [9] and [10]. In
[9], we have focused on anti-patterns that are connected to the modeling of material
relations (roughly domain associations) and, in [10], on those connected to the model-
ing of roles. Here, in contrast, we focus on some anti-patterns that emerge when mod-
eling parthood (part-whole) relations. In particular, we focus on anti-patterns that
emerge when modelers confuse the ontological unity criteria involved in the modeling
of two particular type of parthood relations, namely, the member of relation and the
component of relation.

The contributions of this paper are three-fold. Firstly, we contribute to the identifi-
cation of two new Ontological Anti-Patterns for conceptual modeling, in general, and
for OntoUML, in particular. Secondly, after precisely characterizing these anti-
patterns, we propose a set of refactoring plans that can be adopted to eliminate the
possible unintended consequences induced by the presence of each of these anti-
patterns. Finally, we present an extension for the Menthor Editor1, an open-source
OntoUML model-based editor that: (i) automatically detects anti-patterns in their
models; (ii) supports users in exploring whether the presence of an anti-pattern indeed
characterizes a modeling error; (iii) automatically executes refactoring plans to rectify
the model.

1 https://github.com/menthortools/menthor-editor

3

The remainder of this article is organized as follows: in Section 2, we briefly elab-
orate on the modeling language OntoUML and some of its underlying ontological
categories, with a particular focus on the modeling of parthood relations; In Section 3,
we first briefly present the anti-pattern elicitation method employed here and charac-
terize the model benchmark used in this research; In Section 4, we present the newly
elicited Ontological Anti-Patterns with their unintended consequences, as well as
possible solutions for their rectification in terms of model refactoring plans; Section 5
elaborates on the extensions implemented in the OntoUML editor taking into account
these anti-patterns; Finally, Section 6 presents some final considerations.

2 Ontological and Cognitive Aspects

Parthood is a relation of fundamental importance in conceptual modeling. As such, it
is present as a primitive in practically all major conceptual modeling languages and as
a micro-theory in all foundational ontologies used in conceptual modeling [7].

Being a cognitively-oriented descriptive ontology, UFO includes micro-theories to
address the four kinds of parthood relations generally recognized in Cognitive Science
[11,12], namely, the relations of subquantity-quantity, subcollective-collective, mem-
ber-collective and component-functional complex. In UFO, these relations are fully
axiomatized and, in their corresponding formal axiomatizations, these relations are
characterized w.r.t. formal theories in classical and non-classical mereology [13-17].
In particular, all these relations are shown to conform to the following standard mere-
ological principles: non-reflexivity, asymmetry and the so-called Weak Supplementa-
tion Principle (WSP). WSP mandates that if an individual X is part of an individual Y
then there must exist at least another individual Z that is mereological disjoint from X
and that is also part of Y. In other words, if an individual is mereologically non-
atomic (i.e., if it has parts), then it must have at least two disjoint parts.

Being based on UFO, OntoUML has modeling primitives termed subQuantityOf,
subCollectiveOf, memberOf and componentOf representing these four types of par-
thood relations, respectively. Moreover, it includes in its metamodel formal con-
straints representing the axiomatization of these relations according to UFO.

The subquantity-quantity is focused on modeling parts of an amount of matter
(e.g., alcohol-wine, gin-Martini, ice cream-milkshake) and has been discussed in
depth in [17]. This paper focuses on part-whole relations of the three remaining kinds,
i.e., the ones involving collectives and their parts (subCollectiveOf and memberOf)
the one involving functional complexes and their parts (componentOf).

There is an important difference between an ontological account of parthood such
as the one included in UFO and classical mereological theories [13], namely, whilst
the latter theories are about a binary relation between the part and the whole, the for-
mer theories also address the relations that have to hold between the parts in order for
them to form a whole. In other words, we must address the question of what kind of
unity principle binds the parts together such that they can form a particular whole.

An important ontological distinction between collectives and functional complex-
es is related exactly to the differentiation between the types of unity principles that
form these two types of wholes. In the case of collectives, this unity principle is a
uniform relationship (i.e., a relation instance) that holds between all parts and only

4

those parts [14,15]. Because of the uniformity of this relationship, the collective has a
uniform structure, i.e., all its members are undifferentiated w.r.t. to the whole. In other
words, they can be said to play the same role w.r.t. the whole. Take for example col-
lectives such as a forest, a crowd, a pack of lions or a deck of cards with their corre-
sponding instances of the memberOf relation (i.e., tree–forest, person-crowd, lion-
pack, card–deck). In all of these cases, the wholes have a uniform structure provided
by a uniform unity principle (e.g., a crowd is a collective of person all which are posi-
tioned in a particular topologically self-connected spatial location) and their parts are
all considered to play the same role w.r.t. the whole (e.g., all persons are equally con-
sidered to be membersOf the crowd). Having uniform criteria regarding their member-
ship does not entail that collectives cannot have differentiated parts. However, these
parts are of a different kind, namely, they further structure collectives in terms of sub-
collectives. For example, the male portion of the crowd and the female portion of the
crowd are subcollectivesOf the crowd. Likewise, the teenager portion of the crowd is
another subcollectiveOf the crowd that mereologically overlaps with at least one the
former sub-collectives.

In contrast to collectives, functional complexes are unified by a functional archi-
tecture formed by a chain of functional dependence relations [16]. In a functional
complex, there is a differentiation of the roles played by the different parts. Moreover,
by playing these different functional roles, the parts contribute in complementary
manners to the functionality of the whole. Take for example functional complexes
such as a circulatory system, a car, a computer network, or an organization and their
corresponding componentOf relations (i.e., heart-circulatory system, engine-car, rout-
er-computer network, presidency-organization). In all these examples, the parts play
particular functional roles contributing in specific ways to the functionality of the
whole (e.g., the heart plays the functional role of pumping blood w.r.t. to the circula-
tory system such that the circulatory system cannot function as such without having a
component play that particular role of blood pump) [16].

Fig. 1. Fleet as a functional complex versus fleet as a collection.

Finally, it is important to highlight that many natural language terms exhibit a case
of systematic polysemy [18] in referring both to collectives and functional complexes.
For example, take the case of a fleet, as discussed by [11,12]. In the case that all ships
of a fleet are conceptualized as playing solely the role of a memberOf a fleet, then the
term fleet can be said to refer to a collection. In contrast, if a fleet is conceptualized
from a functional perspective in which roles are further specialized in leading ship,
defense ship, storage ship and so forth, the fleet term refers to a functional complex.

5

In other words, the term fleet seems to refer in a polysemic manner to two different
entities: one that is an organizational entity/functional complex that has a functional
architecture in which parts play a number of differentiated roles; another that is just a
collection of ships. On one hand, these two entities are distinct, following different
identity and unity principles (e.g., while replacing an individual ship creates a differ-
ent collective of ships it does not alter the identity of the fleet-qua-functional-
organization). On the other hand, they bear a particular relation to each other, namely,
a relation of constitution [7], i.e., the fleet-qua-functional-organization is constituted
by the fleet-qua-collection-of-ships, as depicted in Fig. 1.

Following the ontological distinctions put forth by UFO, OntoUML countenances
three different stereotypes that can be applied to types of substantial entities in the
domain, depending on the nature of their unity criteria: «kind» for types of functional
complexes, «collective» for types of collectives, and «quantity» for types of quanti-
ties. The types marked with these three stereotypes represent what the modeler deems
to be the kinds of entities in the domain (in the ontological sense). As such, these
types aggregate essential properties for their instances. For this reason, they are static
(i.e., modally rigid types), meaning that they classify their instances in all possible
situations. Rigid types that specialize those former three types are stereotyped as
«subkind» (e.g, the «subkind» Man specializes the «kind» Person); dynamic types
specializing them are either stereotyped as «role», when their dynamic classification
condition is a relational one (e.g., student, husband, father), or «phase», in case their
dynamic classification condition is an intrinsic one (e.g., teenager, puppy or living
person); abstract types (aka dispersive types [7]) that classify instances of more than
one kind (i.e., more than one type stereotyped as «kind», «collective» or «quantity»,
or any combination of these) are stereotyped as «category» (in case they are rigid
abstract types, e.g., the type Physical Object rigidly classifying entities of kinds peo-
ple, buildings, dogs, car, etc.), «roleMixin» (in case they are dynamic and relational
abstract types, e.g., the type Customer classifying entities of kinds people and organi-
zation) or «mixin» (an abstract type that is static to some instances and dynamic to
others, e.g., the type Insured Item classifying rigidly things of the type Car and dy-
namically things of the kinds Trip and Building).

For an in depth discussion and formal characterization of UFO and OntoUML,
one should refer to [7]. In particular, for ontological and cognitive aspects and formal
characterization of collectives and functional complexes in UFO, as well as the corre-
sponding OntoUML profiles for the memberOf/subCollectiveOf and componentOf
relations, one should refer to [15] and [16], respectively.

3 Methods and Materials

Our approach to identify ontological anti-patterns is an empirical qualitative analysis.
It starts with the selection of a model for analysis, which is followed by the identifica-
tion of relevant model fragments for analysis. Such fragments can consist of a whole
diagram, a subset of a diagram or even a new “artificial” diagram produced for the
sake of analysis (model inspection). Step three is to inspect the selected portion of the
model in order to uncover possible problems. We conduct this activity using visual
model simulation [1,6]. This simulation consists in converting OntoUML models into

6

Alloy [19] specifications, generating possible model instances and contrasting these
instances with the set of intended instances of the model. The set of intended instanc-
es correspond to those that represent intended state of affairs [1,6] according the crea-
tors of the models. Upon the identification of a mismatch, we register it as a potential
problem. After detecting a possible problem, we analyze the model in order to identi-
fy which structures (i.e., combination of language constructs) caused that problem. In
the sequence, we interact with the modelers (when available) or inspect the documen-
tation accompanying the model to define whether the identified structure is indeed
problematic. If that is the case, we propose a possible solution to rectify the model
and register it as a problem-solution pair. With a modified model, we go back to step
three. This iteration is repeated until no more problems can be identified in that frag-
ment and then, another fragment is selected. The analysis stops whenever we inspect
all relevant model fragments. After inspecting each model, we analyze the generated
problem-solution pairs in order to generalize them into pairs of anti-
patterns/refactoring plans.

Our empirical analysis for uncovering anti-patterns was performed using a reposi-
tory of 54 models2. Out of these, 11 models were developed in the context of academ-
ic research without industry collaboration. An example is The Configuration Man-
agement Task Ontology [20], a product of a Masters dissertation. Furthermore, 7
models had total or partial participation of private companies and/or governmental
organizations, the most significant being the MGIC Ontology [21], developed within
a re-search project with a regulatory agency responsible for controlling ground trans-
portation services in Brazil.

Concerning the purpose for which the models have been created, the repository
contains 10 models (16%) that are intended to serve as a reference domain or core
ontologies (e.g. UFO-S [22] for the domain of services). Another 10 models (16%)
have been developed in order to perform ontological analysis on existing formaliza-
tions, databases or modeling languages. An example is the refactoring of the Concep-
tual Schema of Human Genome presented in [23]. The repository also contains 8
models (13%) designed for knowledge-based applications, 6 (10%) whose main inten-
tion was to support semantic interoperability between systems and/or organizations,
and only 2 (3%) for the purpose of enterprise modeling. For the remainder 26 models
(42%), there is no information w.r.t. this aspect of classification.

Regarding the modeler’s overall expertise in OntoUML, 22 models (41%) have
been developed by beginners (18 of these models are also graduate course assign-
ments) and 32 (59%) developed by experienced modelers. Finally, we look into the
total number of modelers involved in the model construction. Most models (35 out of
54) were developed individually, whilst 15 were the product of a collaboration be-
tween 2-4 people, and 4 involved 7-10 people.

The two anti-patterns discussed in next section appeared in 37,04 % of the models
with 142 occurrences (HomoFunc, see Section 4.2) and in 12,96% of the models with
60 occurrences (HetColl, see Section 4.1).

2 The models we used in our research, with an exception of a few (due to non-disclosure agreements), are

available at http://www.menthor.net/model-repository.html.

7

4 Ontological Anti-Patterns

4.1 Heterogeneous Collective (HetColl)

As we discussed in Section 2, a collective is an entity whose parts (members) play the
same role w.r.t. whole. If we say that a troupe is a collection of artists, we are imply-
ing that all artists play merely the generic role of being part of the troupe. Conversely,
functional complexes are entities whose parts play different roles w.r.t. whole, thus
making different contributions to the behavior of the whole. For instance, the CPU is
a functional part of a computer, as well as the hard-drive, since the former is respon-
sible for processing operations, whilst the latter is responsible for storing non-volatile
data. As discussed in [7], sometimes, different conceptualizations can articulate a
notion in reality as a functional complex or as a collective. As previously mentioned,
one conceptualization can articulate a fleet as a functional complex, in which different
ships play different functional roles, while another conceptualization can articulate it
as merely a collection of ships.

In OntoUML, collectives can be further refined into sub-collections. Again, alt-
hough defining collective parts of super-collective provides further structure to the
whole, it still does not differentiate roles played by their members. For instance, the
troupe could be refined into sub-collections of singers, dancers and actors, whose
members are the artist who can sing, dance and act, respectively. In this case, the
principle unifying these sub-collections is just a strengthen of the common principle
that unifies the collection in the first place [15] and, thus, all the members of the col-
lection are still undifferentiated w.r.t. the whole. In other words, the whole regards
them merely as members.

The Heterogeneous Collective (HetColl) anti-pattern identifies collectives that are
connected via membership relation to members classified under different types. This
can be an indication that the modeler either confused the collection and functional
complex interpretations of the same notion or confused the membership and sub-
collection relations. By analyzing the models in the OntoUML repository and by dis-
cussing their intended semantics with their respective modelers, we have notice that
whenever a collective noun (like fleet, group, pack) is used, modelers are most likely
to represent it as a collective, without fully analyzing the subtleties of the particular
conceptualization at hand.

The key aspect to successfully analyze this anti-pattern is to identify the nature of
the unity criteria connecting the parts that form the whole. If one concludes that the
parts in fact play different roles w.r.t the whole, the refactoring plan is to change the
ontological category of the whole to a functional complex (if necessary, also change
the ontological category of parts) and then to change the stereotype of the meronymic
relations to componentOf, instead of memberOf. Alternatively, if one concludes that
the members indeed play the same role regarding the whole, we propose to make this
position explicit by creating a type as the direct parent of all current part types and
then merge all memberOf relations into a new that is connected to this newly created
supertype. Yet a third alternative is presented when the modeler concludes that the
types representing the members are in fact sub-collections, i.e., they are refinements

8

of internal structure of the collective whole [15]. To rectify this case, one must change
the stereotypes of the memberOf relations to subCollectionOf and, if necessary, adjust
the ontological category of the parts to be that of a collection.

Table 1. Characterization of the HetColl anti-pattern.

Acronym Name

HetColl Heterogeneous Collective

Description

A collective connected to multiple types of member through «memberOf» relations suggests a misrepre-
sentation of the concepts w.r.t. to the ontological nature of the whole and the meronymic relations.

Pattern Roles

Name Allowed Sterotypes

1 Whole «collective», «subkind», «phase», «role», «category», «roleMixin», «mixin»

2..* partOfn «memberOf»

2..* Partn «kind», «collective», «subkind», «phase», «role», «category», roleMixin», «mixin»

Additional Constraints

The Whole should be: (i) stereotyped as collective; (ii) stereotyped as subkind, role or phase and be a direct
or indirect subtype of another type stereotyped as collective; or (iii) be stereotyped as mixin, category or
roleMixin and have all its direct or indirect subtypes meeting conditions (i) or (ii)

Generic Example

Refactoring Plans

1. Change parts to functional parts: Change the nature of Whole to functional complex and change the
stereotype of every partOfn to «componentOf».

2. Change parts to sub-collections: Change the stereotype of every partOfn to «subCollectionOf». If a
Partn is not a collection, this should be rectified in the model.

3. Set a generic membership: Create GeneralPart, a common direct supertype of every Partn; remove
every partOfn from the model; and create generalPartOf, a new «memberOf» from Whole to GeneralPart.
The stereotype ascribed to GeneralPart can be derived from the stereotype of Partn.

9

Note that in both the first and third refactoring plans described, whenever there is
a need to ontological category of either a part type or a whole type, the following
strategy can be adopted. If (1) a type A is erroneously stereotyped as a «kind» or a
«quantity», then A should be represented as a «collective». However, if (2) A is stere-
otyped as «subkind», «role» or «phase» and (directly or indirectly) specializes a
«kind» or a «quantity» type S, one can: (2.1) change the stereotype of S to «collec-
tive»; (2.2) select another «collective» in the model and make A specialize it; or (2.3)
create a new «collective» be the supertype of A. Finally, if (3) P is stereotyped as a
«category», «mixin» or «roleMixin», strategies (1) and (2) should be adopted for
every subtype of P.

An example of the occurrence of HetColl is depicted in Fig. 2 below. This model is
an adaptation of a fragment extracted from a governmental conceptual model in the
domain of agricultural protection. The fragment describes a particular type of work
group, named Technical Administrative Support Group, which has employees that
play the roles of technical and/or administrative support. The cardinalities constraints
defined in the association ends of parts show that this type of work group requires
employees performing different duties. The requirement of the presence of people
playing these different roles indicates that the work group should be really modeled a
functional complex instead of a collective. As it is typical in these cases, there is an-
other implicit entity, namely, the staff of the work group, which at each point in time
constitutes the Work Group as a functional complex. However, the Work Group itself
and its staff are ontologically distinct entities as these are associated with different
identity criteria (e.g., while changing a member of the staff creates a different staff, it
can still be the same Work Group, just then constituted by a different staff) [7].

Fig. 2. HetColl occurrence in a fragment of a governmental model.

4.2 Homogeneous Functional Complex (HomoFunc)

The Homogeneous Functional Complex (HomoFunc) anti-pattern is the counterpart of
the HetColl anti-pattern. As discussed in Section 2, functional complexes have heter-
ogeneous structures, such that its parts play different functional roles w.r.t. the whole.
Therefore, when a modeler describes a functional complex, it is usually expected that
she would represent multiple componentOf relations connected to such type to ac-
count for the diversity of such functional roles.

10

Table 2. Characterization of the HomoFunc anti-pattern.

Acronym Name

HomoFunc Homogeneous Functional Complex

Description

A functional complex connected to a single part through a «componentOf» relation suggests that all
instances of the part play the same role w.r.t. their whole, a homogeneous structure that does not charac-
terize a functional complex.

Pattern Roles

Name Allowed Sterotypes

1 whole «kind», «subkind», «phase», «role», «category», «roleMixin», «mixin»

1 part «kind», «subkind», «phase», «role», «category», «roleMixin», «mixin»

1 partOf «componentOf»

Additional Constraints

1. Both Whole and Part should be: (i) stereotyped as kind; (ii) stereotyped as subkind, role or phase and
be a direct or indirect subtype of another type stereotyped as kind; or (iii) be stereotyped as mixin, cate-
gory or roleMixin and have all its direct or indirect children meeting conditions (i) or (ii)
2. The lower bound multiplicity of partOf’s association end connected to Part is greater than one
3. Whole is not a subtype of another class who has other types of part

Generic Example

Refactoring Plans

1. Change to membership: change the nature of Whole from a functional complex to a collection and
change the stereotype of partOf from «componentOf» to «memberOf»

2. Add functional parts: specify additional functional parts for Whole

3. Add subtypes for Part: specify subtypes for Part and connect them to Whole through additional
«componentOf» relations. If the original partOf relation is kept in the model, the added relations must
subset, redefine or specialize it (see discussion in [24]).

In OntoUML, a type represents a functional complex when: (i) it is stereotyped as

a «kind»; (ii) it is a subtype of kind (i.e., as a «subkind», «role» or «phase»); (iii) it

11

represents a non-sortal type (i.e., «category», «mixin» or «roleMixin») and all its
(direct or indirect) sortal subtypes satisfy conditions (i) or (ii). An occurrence of the
HomoFunc anti-pattern is observed in a model when there is a model fragment repre-
senting a homogenous structure of a functional complex, i.e., there is a «kind» type
connected through a single componentOf relation to one single type of part.

In our empirical investigation, we observed that a common reason for an occur-
rence of HomoFunc is when a modeler mistakenly represents a functional complex
while actually intending to represent a collective. This can happen because alternative
conceptualizations can ascribe different interpretations for the same term in the do-
main (see discussion on section 3.1). For this case, we propose the following refactor-
ing plan (see Table 2): one should transform the functional parthood relation at hand
(a componentOf) in a membership relation (a memberOf). Then, one should change
the ontological category of the whole type to that of a collection.

In a second situation, we have that a modeler actually intended to represent a het-
erogeneous structure for the whole. In this case, the modeler should refine the model
to include additional types of part. This can be accomplished in two different albeit
non-exclusive ways. First, through the specification of new types of functional parts,
i.e., types that bear no taxonomic relations to the type already present in the model
representing the part (see refactoring plan 2 in Table 2). Second, through the creation
of subtypes of the single functional part, alongside with the additional corresponding
componentOf relations (see refactoring plan 3 in Table 2).

In table 2, the constraint number 2 for the characterization of this anti-pattern ex-
presses that the parthood relation represented should satisfy the weak supplementation
axiom (one of the most fundamental axioms of parthood, see [13-17]). Otherwise, the
situation would indicate simply an incomplete model and would not exemplify an
occurrence of this anti-pattern. Constraint number 3, instead, exclude the situation in
which role differentiation is guarantee by additional parthood relations inherited from
a possible supertype of the type representing the whole.

Fig. 3. HomoFunc occurrence in a fragment of an IT infrastructure model.

An example of the occurrence of HomoFunc is depicted in Fig. 3. The model
fragment is extracted from the PAS 77 ontology [25], a model in the domain of IT
architecture. Notice that the IT Architecture type is defined as being solely composed
of IT Components, which in turn can be sites, platforms, operating systems and data
storage units. In its original form, the model suggests that all architectural parts are
equal w.r.t. the IT Architecture and, hence, that an IT architecture is simply a collec-
tion of IT components. If this is the intended semantics, a more suitable formalization
would be to represent IT Architecture as a collective connected to its parts by a mem-

12

berOf relation (as described by the first refactoring plan on Table 2). Conversely, if
this would not the intended semantics, the model would be more accurate if the spe-
cific parthood relations between IT Architecture and its different functional compo-
nents were made explicit (following a the third refactoring plan proposed in Table 2).

5 Tool Support

The Menthor Editor, formerly known as OntoUML Lightweight Editor (OLED), is an
open-source ontology-driven conceptual modeling environment. A full support for
anti-pattern management has been implemented in this editor. Following the strategy
adopted in [9], these anti-pattern management functionalities include anti-pattern
detection, analysis (via a wizard-based feature) and elimination (using the rectifica-
tion plans proposed here). In other words, by employing the explicitly defined MOF
metamodel on which this editor is based, we have: firstly, implemented algorithms to
automatically detect anti-pattern occurrences, accessible through a detection dialog
window (see example in the left part of Fig.3); in sequence, based on our pre-defined
solutions (rectification plans), we implemented wizards to interact with users to sup-
port anti-pattern analysis (the right part of fig.3 depicts a wizard for the HetColl anti-
pattern); finally, we implemented algorithms to automatically rectify the model using
the input provided during the interaction with this wizard. In the Fig. 4, we have used
these automated functionalities to evaluate the model of Fig. 2.

Fig. 4. Tool support for anti-pattern management.

6 Final Considerations

In this paper, we extended our work on ontological anti-patterns, proposing three new
error-prone structures in combination with pre-defined rectification solutions. In par-
ticular, we focused on anti-patterns related to the modeling of parthood (collectives
and functional complexes) in conceptual modeling. Parthood is of fundamental im-
portance in conceptual modeling, in general, and in areas such as Enterprise Model-

13

ing, Economy and Finance, Manufacturing, Life Sciences, among others, in particu-
lar. For this reason, the identification of these anti-patterns and their associated recti-
fication plans as well as their automation in a model-based computational tool consti-
tutes important contributions to the theory and practice of these disciplines.

We emphasize that it is not among our goals in this paper to defend particular
modeling choices for specific concepts such as fleet, IT architecture or Work Group.
In other words, we have no stand here in whether, in general, concepts such as these
are better represented as functional complexes or collectives. The adequacy of a repre-
sentation choice over another (or even both choices used simultaneously, following a
modeling pattern such as the one of Fig.1) depends exclusively on the rationale of a
particular model and its underlying conceptualization. Nonetheless, the anti-patterns
proposed in this paper are able to identify situations in which modelers recurrently
make mistaken representation choices in that respect, i.e., choosing to use a collection
to represent what is a functional complex in the domain, or vice-versa.

References

1. Guizzardi, G., Ontological patterns, anti-patterns and pattern languages for next-
generation conceptual modeling. Proceedings of the 33rd International Conference on
Conceptual Modeling (ER’14), pages 13–27. Springer, 2014.

2. Verdonck, M., Gailly, F.: Insights on the Use and Application of Ontology and Con-
ceptual-Modeling Languages in Ontology-Driven Conceptual Modeling. In: Proceed-
ings of ER 2016. LNCS, Vol. 9974, 83-97. Springer (2016).

3. Nardi, J.C., Falbo, R.A, Almeida, J.P.A., Foundational Ontologies for Semantic Inte-
gration in EAI: A Systematic Literature Review. I3E 2013: 238-249 2014.

4. Guizzardi, G., Theoretical Foundations and Engineering Tools for Building Ontologies
as Reference Conceptual Models, Semantic Web Journal, Editors-in-Chief: Pascal
Hitzler and Krzysztof Janowicz, IOS Press, Amsterdam, 2010.

5. Koenig, A., Patterns and antipatterns. Journal of Object-Oriented Programming,
8(1):46–48, 1995.

6. Benevides, A.B. et al., Validating modal aspects of OntoUML conceptual models using
automatically generated visual world structures, Journal of Universal Computer Sci-
ence, Special Issue on Evolving Theories of Conceptual Modeling, Editors: Klaus-
Dieter Schewe and Markus Kirchberg, 2010.

7. Guizzardi, G. Ontological Foundations for Structural Conceptual Modeling. Telematics
Institute Fundamental Research Series, Enschede, The Netherlands, 2005.

8. Guizzardi, G. et al., Towards Ontological Foundation for Conceptual Modeling: The
Unified Foundational Ontology (UFO) Story, Applied Ontology, v.10, IOS Press, 2015.

9. Sales, T.P., Guizzardi, G., Ontological anti-patterns: Empirically uncovered error-prone
structures in ontology-driven conceptual models. DKE, 99:72–104, 2015.

10. Sales, T.P., Guizzardi, G., Anti-patterns in Ontology-driven Conceptual Modeling: The
Case of Role Modeling in OntoUML, Ontology Engineering with Ontology Design
Patterns: Foundations and Applications, A. Gangemi, P. Hizler, K. Janowicz, A. Kris-
nadhi, V. Presutti (Editors), IOS Press, The Netherlands, 2016.

11. Pribbenow, S. Meronymic Relationships: From Classical Mereology to Complex Part-
Whole Relations, The Semantics of Relationships, Kluwer Academic Publishers, 2002.

12. Gerstl, P. and Pribbenow, S., Midwinters, End Games, and Bodyparts. A Classification

14

of Part-Whole Relations, Intl. Journal of Human-Computer Studies 43: 865-889, 1995.
13. Varzi. A.C.: ‘Parts, wholes, and part-whole relations: The prospects of mereotopology’.

Journal of Data and Knowledge Engineering, 20:259–286, 1996.
14. Simons, P.M., Parts: An Essay in Ontology, Clarendon Press, Oxford, 1987.
15. Guizzardi, G., Ontological Foundations for Conceptual Part-Whole Relations: The

Case of Collectives and their Parts, 23rd International Conf. on Advanced Information
System Engineering (CAiSE'11), London, UK.

16. Guizzardi, G. The Problem of Transitivity of Part-Whole Relations in Conceptual
Modeling Revisited, 21st International Conference on Advanced Information Systems
Engineering (CAISE’09), Amsterdam, The Netherlands, 2009.

17. Guizzardi, G. On the Representation of Quantities and their Parts in Conceptual Model-
ing, Proceedings of FOIS 2010, IOS Press, Toronto.

18. Ravin, Y., Leacock, C., Polysemy: Theoretical and Computational Approaches. Oxford
University Press, USA, 2002, p. 240.

19. Jackson, D. Software Abstractions: logic, language, and analysis. MIT press, 2012.
20. Calhau, R.F., Falbo, R.A., A configuration management task ontology for semantic in-

tegration. In Proceedings of the 27th Symposium on Applied Computing, SAC ’12,
pages 348–353, New York, USA, 2012. ACM.

21. Bastos, C.A.M. et al., Building up a Model for Management Information and
Knowledge: The Case-Study for a Brazilian Regulatory Agency, in International
Workshop on Software Knowledge (SKY), 2011.

22. Nardi, J.C. et al. Towards a commitment- based reference ontology for services. In
Proceedings of the 17th International Enterprise Distributed Object Computing Confer-
ence (EDOC’13), pages 175– 184. IEEE, 2013.

23. Ferrandis, A.M.M. et al., Applying the principles of an ontology-based approach to a
conceptual schema of human genome. Proceedings of ER 2013, Hong Kong.

24. Costal, D. et al., Formal Semantics and Ontological Analysis for Understanding Sub-
setting, Specialization and Redefinition of Associations in UML, 30th International
Conference on Conceptual Modeling (ER 2011), Brussels, Belgium, 2011.

25. Silva, H.C., de Castro, R.C.C., Gomes, M.J.N., Garcia, A.S., Well-founded IT architec-
ture ontology: an approach from a service continuity perspective. 4th Networked Digi-
tal Technologies International Conference (NDT’12), p.136–150. Springer, 2012.

