
Reference Ontology Specification Document

Ontology​: Object-Oriented Code Ontology (OOC-O)

1. Introduction

This document presents the requirements of the Object Oriented Code Ontology and
is organized as follows: Section 2 contains the ontology purpose and its intended uses;
Section 3 presents the domain for which the ontology is being constructed; Section 4
presents the reference ontology itself, including architecture (modularization) and
description of the competency questions, OntoUML conceptual models, axioms (informal
and formal), dictionary of terms and evaluation of the each sub-ontology considered in the
architecture.

2. Purpose and Intended Uses of Ontology

The Object-Oriented Code Ontology (OOC-O) aims to identify and represent the
semantics of the entities present at compile time in object-oriented (OO) code. Given such
scope, even though objects are the fundamental constructs in OO programming and
messages are responsible for exchanges between objects, they are not covered by OOC-O,
since they exist only at runtime.

The intention is to use the ontology to assist the understanding of different
programming languages and to support the development of tools that work with these
languages, in the context of polyglot programming and object-oriented frameworks. That is,
we intend to apply the ontology as a meta language of OO programming languages in a
polyglot programming development environment and in the context of semantic
interoperability among object/relational mapping frameworks.

3. Domain Description

A Programming Language is defined by a formal grammar, however there must also
be a meaning for each construct of the language. Programs have their meanings given by
the semantics of their contained constructs, and, generally, such semantics must preserve
the meanings of the constructs across programs [1]. Without the semantics of constructs, it
would be difficult to verify if the code represents what it was designed to do.

In general, a programming language is presented through its syntax containing some
informal explanation of its semantics [2]. To the best of our knowledge, no axiomatization
demonstrating the existential commitments of a language have been presented, nor is there
effort to adopt a consensual conceptualization between languages, in particular
object-oriented ones.

Object-oriented (OO) programming is dened as a software implementation method
in which programs are organized as cooperative collections of objects, each of which

representing an instance of some class, and whose classes are members of a hierarchy of
classes linked by inheritance relationships. A class serves as a template from which objects
can be created. It is a defined type that determines the data structures (attributes) and
methods associated with that type. In order for the attributes and methods of a class to be
used in defining a new class, inheritance is applied as a means of creating abstractions.

4. Reference Ontology

This section introduces the Object-Oriented Code Ontology (OOC-O). The
subsections present their competency questions, conceptual model in OntoUML, axioms,
dictionary of terms and preliminary evaluation of the ontology.

4.1. Modularization

Figure 4.1.1 shows the sub-ontologies identified in this context, which are described
in Table 4.1.1.

Figure 4.1.1 Object-Oriented Code Ontology Architecture.

Table 4.1.1 Sub-ontologies of the OOC-O.

Sub-ontology Description

Object-Oriented Code Ontology
Core Module

Ontology that describes the fundamental concepts of code in
object-oriented programming languages

Object-Oriented Code Ontology
Class Module

Ontology that describes the fundamental concepts related to class
in object-oriented programming languages

Object-Oriented Code Ontology
Class Member Module

Ontology that describes the fundamental concepts related to
member (attribute and method) of the class in object-oriented
programming languages

4.2. Object-Oriented Code Ontology - Core Module

4.2.1. Competency Question

For functional requirements, we have iteratively defined the competency questions
(CQs) presented in Table 4.2.1.

Table 4.2.1 OOC-O Core Module competency question.

ID Competency Question

CQ1 How an OO source code is represented?

CQ2 What makes up an OO source code?

CQ3 How are classes logically organized in an OO source code?

CQ4 What is the visibility of an element present in an OO source code?

CQ5 What is the identifier of an element present in an OO source code?

CQ6 What elements compose a class?

CQ7 What is the return type of a method?

CQ8 What is the value type of a variable?

CQ9 What is the mutability of a variable?

CQ10 What types makes up an OO source code?

4.2.2. Conceptual Model

The OntoUML diagram is presented in Figure 4.2.1 and the definitions of their
terms is presented in the Dictionary of Terms (Table 4.2.2).

Figure 4.2.1 OntoUML Diagram of the OOC-O Core Module.

SPO establishes a common conceptualization on the software process domain
(processes, activities, resources, people, artifacts, procedures, etc.). We reuse the concept of
software Artifact, object consumed or produced during the software process, which is
represented in a Language, a set of symbols used for encoding and decoding information. A
software artifact can be, among other things, a Software Item such as a piece of software
produced during the software process.

SwO further specializes this concept: a Software System is a Software Item that
aims at satisfying a system specification. It is constituted of Programs, which are Software
Items that aim at producing a certain result through execution on a computer, in a particular
way, given by a program specification. In turn, Programs are constituted of Code, a
Software Item representing a set of computer instructions and data definitions which are
represented in a Programming Language as a Source Code.

OOC-O is anchored in the concept of Object-Oriented Source Code, a Source Code
specialization represented in an Object-Oriented Programming Language. Such code is
constituted of Physical Modules, i.e., physical units in which the physical files (ex: .java)
are stored (e.g., a directory in the file system). Physical Modules are composed of Classes
organized in Logical Modules, i.e., packages or namespaces that group classes and allow
programmers to control dependencies, visibility, etc. Both Modules (Physical or Logical)
can be decomposed in their respective sub-Modules. However, decomposition can only
take place among modules of the same type: m1;m2 : Module; PhysicalModule(m1) ^ ∀
componentOf(m1;m2) ! PhysicalModule(m2) (A1) and m1;m2 : Module; ∀
LogicalModule(m1) ^ componentOf(m1;m2) ! LogicalModule(m2) (A2).

Classes are composed of Members, be it a Method (Member Function), function
that belongs to the class and provides a way to dene the behavior of an object, being
invoked when a message is received by the object [3]; or be it an Attribute (Member

Variable), variable that belongs to the class and provides a way to dene the state of its
objects. Classes, Methods and Variables are Named Elements characterized by a unique
Name and a Visibility, which denes the access type to the element.

Attribute is a subtype of Variable, item of information located in the memory whose
assigned value can be changed or not according to its Mutability. Analogously, a Method
has a Return Type, whose values refer to the Types of information that the language is
capable of manipulating, whether a Primitive Type, predefined by the language through a
reserved word; or a Class, predefined or not.

4.2.3. Dictionary of Terms

The definition of the terms present in OOC-O Core Module is presented in Table
4.2.2.

Table 4.2.2 Dictionary of Terms of the OOC-O Core Module.

Term Definition

Attribute
(Member
Variable)

Variable that belongs to a class.

Class An abstract-definition element in the OO programming language to express such
definitions [5], that is, class is an abstract data type and a mechanism for defining an
abstract data type in a program [4]. Class describes the attributes of its objects as well
as the methods they can execute [6].

Element Visibility Access type defined to control the level of visibility of variables, methods, and classes
[4]

Initial Variable
Value

Initial value set in the declaration of a variable or defined by a default value that
depends on its data type [6].

Logical Module Logical unit in which physical files are organized by language.

Member Element which makes up a class, defined as a variable or method.

Method
(Member
Function)

Function of a class that provides a way to define the behavior of a object [7], invoked
when a message is received by the object [3]. Every method is created in memory only
once so that objects share their instance. Every method is composed of a name, zero or
more parameters and a return.

Module Unit of organization of the physical files of a program.

Mutability Characteristic that allows or not the content or state of a variable to be changed after it
has been initialized.

Name Unique identifier of object-oriented elements

Named Element Elements that are defined by an name identifier and that stores values, functions, or
classes [8]

Physical Module Physical unit in which the physical files (ex: .java) are stored by language. The
operating system does not allow two files with the same name in the same file
directory, so it is necessary to organize the files in different modules.

Primitive Type Type that is pre-defined by the language and named by its reserved word [9]. Primitive
values do not share status with other primitive values.

Return Type Value type returned by the method. Some methods can only act on the object's state and
do not pass a return value to the program [5]

Type Type of information that the language is capable of handling, composed of a domain of
possible values and a set of possible operations that can be performed on those values
[10].
Type is classified in Class and Primitive.

Variable Information item located in specific memory, identified by a symbolic name. Every
variable has an value, which is the value stored in the memory location that it
represents [6]. In statically typed languages, variables are declared with an associated
type [9], but in dynamic languages, no.

Value Type In statically typed languages, variables are declared with an associated type [9], in
dynamic languages, no.

4.2.4. Ontology Verification

The Table 4.2.3 presents the verification of competency questions listing necessary
elements of the ontology to answer each competency question (CQ).

Table 4.2.3 Verification of the OOC-O Core Module.

ID Competency Question

CQ1 How an OO source code is represented?
Object-Oriented Source Code ​represented in​ Object-Oriented Programming Language.

CQ2 What makes up an OO source code?
Object-Oriented Source Code ​constituted of​ Physical Module;
Class ​component of ​Physical Module;
Member ​component of ​Class;
Method (Member Function) and Attribute (Member Variable) ​subtype of​ Member.

CQ3 How are classes logically organized in an OO source code?
Class ​organized in​ Logical Module.

CQ4 What is the visibility of an element present in an OO source code?
Named Element ​characterized by​ Element Visibility.

CQ5 What is the identifier of an element present in an OO source code?
Named Element ​characterized by​ Name.

CQ6 What elements compose a class?
Member ​component of​ Class;
Attribute (Member Variable) and Method (Member Function) ​subtype of ​Member.

CQ7 What is the return type of a method?
Method (Member Function) ​characterized by​ Return Type.

CQ8 What is the value type of a variable?
Variable ​characterized by​ Value Type.

CQ9 What is the mutability of a variable?
Variable ​characterized by​ Mutability.

CQ10 What types makes up an OO source code?
Class and Primitive Type ​subtype of ​Type.

4.2.5. Ontology Validation

The Table 4.2.4 presents the validation of the ontology instantiating their concepts.
For this we use instances of the Java programming language.

Table 4.2.4 Validation of the OOC-O Core Module.

Term Definition

Attribute
(Member Variable)

width ​in:
public class Rectangle{
 private int width;
}

Class Rectangle ​in:
public class Rectangle{}

Element Visibility public ​in:
public class Rectangle{}

Logical Module No Related to Java Language

Member width ​in:
public class Rectangle{
 private int width;
}

Method
(Member Function)

perimeter​ in:
public class Rectangle{
 public int perimeter(){};
}

Module com.shapes​ in:
package com.shapes;
public class ​Rectangle​{}

Mutability angle ​in:
public class Rectangle{
 public final double angle = 90;
}

Name Rectangle ​in:
public class Rectangle{}

Named Element Rectangle ​in:
public class Rectangle{}

Physical Module com.shapes ​in:
package com.shapes;
public class ​Rectangle​{}

Primitive Type int ​in:
public class Rectangle{
 private int width;
}

Return Type int ​in:
public class Rectangle{
 public int perimeter(){};
}

Type int ​in:
public class Rectangle{
 public int perimeter(){};
}

Variable width ​in:
public class Rectangle{
 private int width;
}

Value Type int ​in:
public class Rectangle{
 private int width;
}

4.3. Object-Oriented Code Ontology - Class Module

4.3.1. Competency Question

For functional requirements, we have iteratively defined the competency questions
(CQs) presented in Table 4.3.1.

Table 4.3.1 Competency question of the OOC-O Class Module.

ID Competency Question

CQ1 What types of classes are present in an OO source code?

CQ2 What is a root class?

CQ3 What are type parameter of a generic class?

CQ4 What are the superclasses of a class?

CQ5 What is the visibility of an inheritance?

CQ6 What classes are present into a class?

4.3.2. Conceptual Model

The OntoUML diagram is presented in Figure 4.3.1 and the definitions of their
terms is presented in the Dictionary of Terms (Table 4.3.2).

Figure 4.3.1 OntoUML Diagram of the OOC-O Class Module.

Every Class must either be a Concrete Class, implemented class that can and intends
to have instances [11], or an Abstract Class, incompletely implemented class whose
descendants will use as a basis for further refinement [12]. Abstract class, in contrast to
Concrete Class, should not have instances and should be an Extendable Class.

Further, every class must be either an Extendable Class, class available to be
extended through Inheritance, or Non-Extendable Class, the opposite. An Extendable Class
can assume the Superclass role when relating to a Class that assumes the Subclass role in an
Inheritance relationship: c1; c2 : Class; i : Inheritance; inheritsIn(c1; i)^inheritedF ∀
rom(c2; i) ! subClassOf(c1; c2) (A3). The relationship between a Superclass and a Subclass
is established mainly by the existence of a is-a relation between them [4].

In this context, Inheritance Visibility can be set to limit the Subclass permission on
the members of the Superclass. The Extendable Class inherited by all classes directly or
indirectly in an OO code is known as Root Class [12] and introduces several
general-purpose resources. When present, the Root Class is a common ancestor for all other
existing classes, i.e., c : Class; r : RootClass; c r ! descendantOf(c; r) (A4), where ∀ =/
descendantOf is defined in terms of the subClassOf predicate introduced above, according
to the following axioms: c1; c2 : Class; subclassOf(c1; c2) ! descendantOf(c1; c2) (A5) ∀
and c1; c2; c3 : Class; subclassOf(c1; c2) ^ subClassOf(c2; c3) ! descendantOf(c1; c3) ∀
(A6).

Finally, a Class can also assume the Nested Class role when relating to another
Class by means of its declaration being within the body of that Class [9] (we refer to this as
Nesting). Furthermore, a Class can be a Generic Class, when it describes a template for a
possible set of types [11]. A Generic Class is composed of Type Parameters, which are

identifiers that specify generic type names whose instances must dene recognized types that
will replace the Type Parameter at runtime.

4.3.3. Dictionary of Terms

The definition of the terms present in OOC-O Class Module is presented in Table
4.3.2.

Table 4.3.2 Dictionary of Terms of the OOC-O Class Module.

Term Definition

Abstract Class Class describing an incompletely implemented abstraction, whose descendants will use
as the basis for further refinement [12].

Concrete Class Class describing an completely implemented abstraction.

Extendable Class Class that can be extended by descendant classes, that is, it can be inherited by other
classes.

Generic Class Parameterized class that does not describe a type but a template for a possible set of
types [12].

Inheritance Mechanism designed to facilitate, from the definition viewpoint, the hierarchical
relationship between classes [5].

Inheritance
Visibility

Access type assigned to the inheritance in order to limit the subclass's permission on
superclass members.

Nested Class Class whose declaration is inside the body of another class [9]

Nesting Relationship between class and its nested class.

Non-Extendable
Class

Complete class that can not be extended by descendant classes, that is, it can not be
inherited by other classes.

Root Class Class directly or indirectly inherited by all other classes [12], containing a set of general
purpose resources.

Subclass Class defined by inheritance with another class [13], inheriting its instance variables
and methods.

Superclass Extensible class that shares its characteristics with the subclasses derived from it

Type Parameter Identifier that specifies a generic type name whose instance must set a recognized type
to replate the identifier at runtime.

4.3.4. Ontology Verification

The Table 4.3.3 presents the verification of competency questions listing necessary
elements of the ontology to answer each competency question (CQ).

Table 4.3.3 Verification of the OOC-O Class Module.

CQ1 What types of classes are present in an OO source code?
Generic Class ​subtype of ​Class;
Concrete Class ​subtype of​ Class;
Abstract Class subtype of Class;
Non-Extendable Class ​subtype of​ Class;
Extendable Class ​subtype of​ Class

CQ2 What is a root class?
Extendable Class​ subtype of ​Class;
Root Class ​subtype of​ Extendable Class

CQ3 What are type parameter of a generic class?
Type Parameter​ component of ​Generic Class

CQ4 What are the superclasses of a class?
Subclass ​subtype of​ Class;
Subclass ​inherits in​ Inheritance;
Superclass ​inherited in​ Inheritance.

CQ5 What is the visibility of an inheritance?
Inheritance characterized in Inheritance Visibility

CQ6 What classes are present into a class?
Class ​nest in​ Nesting
Nested Class ​nested in​ Nesting

4.3.5. Ontology Validation

The Table 4.3.4 presents the validation of the ontology instantiating their concepts.
For this we use instances of the Java programming language.

Table 4.3.4 Validation of the OOC-O Class Module.

Term Instantiation

Abstract Class Shape ​in:
public abstract class Shape{}

Concrete Class Rectangle ​in:
public class Rectangle{}

Extendable Class Rectangle ​in:
public class Rectangle{}

Generic Class GenericShape ​in:
public class GenericShape<T> {}

Inheritance extends ​in:
public class Polygon extends Shape{}

Inheritance
Visibility

No Related to Java

Nested Class Point ​in:
public class Rectangle{
 class Point{}
}

Nesting class Point​ in:
public class Rectangle{
 class point{}
}

Non-Extendable
Class

Math ​in:
public final class Math{}

Root Class Object ​in:
public class Object {}

Subclass Polygon ​in:
public class Polygon extends Shape{}

Superclass Shape ​in:
public class Polygon extends Shape{}

Type Parameter T ​in:
public class GenericShapes<T> {}

4.4. Object-Oriented Code Ontology - Class Member Module

4.4.1. Competency Question

For functional requirements, we have iteratively defined the competency questions
(CQs) presented in Table 4.4.1.

Table 4.4.1 Competency question of the OOC-O Class Member.

ID Competency Question

CQ1 What types of methods are present in an class?

CQ2 What variables are present into a class?

CQ3 What are type parameter of a generic method?

CQ4 What is a class method?

CQ5 What is a class instance?

CQ6 What types of instance methods are present in an class?

CQ7 What is a constructor method?

CQ8 What blocks are present into a method?

CQ9 What variables are present into a method?

4.4.2. Conceptual Model

The OntoUML diagram is presented in Figure 4.4.1 and the definitions of their
terms is presented in the Dictionary of Terms (Table 4.4.2).

Figure 4.4.1 OntoUML Diagram of the OOC-O Class Member Module.

Every Method of a Class must be either a Concrete Method, implemented in its own
(concrete or abstract) Class by means of Blocks; or an Abstract Method, belonging to an
Abstract Class and implemented (or made concrete) only in its Subclasses [14]. A Concrete
Method can be specialized according to its execution context, either in the context of the
class, invoked by the class in a Class Method, or in the context of the object, invoked by the
object in an Instance Method. An Instance Method can be specialized in Accessor Method,
which provides an interface between the internal data of the object and the external world
[7], in Constructor Method, which species how an object should be created and initialized,
or in Destructor Method, which is responsible for cleaning unusable objects. Return Type
cannot characterize neither a Constructor nor a Destructor Method: rt : ReturnType;m : ∀
Method; characterization(rt;m) ! :ConstructorMethod(m) ^ :DestructorMethod(m) (A7).

Further, every Method must be either an Overridable Method, method belonging to
an Extendable Class that can be overwritten in descendant classes [13], such as an Abstract
Method declared in an Abstract Class to be implemented by Subclasses; or a
Non-Overridable Method, method that can be inherited but is not allowed to be overwritten
in descendant classes, such as Class Methods and Constructor Methods. A Method can also
be a Generic Method when describing a template for a possible set of methods composed of
one or more Type Parameters.

Variables, in turn, can be associated with methods, i.e., be a Method Variable, or
classes, i.e., an Attribute (Member Variable). In an indirect way, Method Variable is
member of a Class, since a Class is composed of Methods. Method Variable can be a
Parameter Variable declared within the signature of a Method or Local Variable declared
within a Block. Part-of relations among Methods, Blocks and Local Variables are transitive
in the following ways: v : LocalVariable; b1; b2 : Block; componentOf(v; ∀
b1)^componentOf(b1; b2) ! componentOf(v; b2) (A8) and v : LocalV ariable; b : Block; ∀
m : ConcreteMethod; componentOf(v; b) ^ componentOf(b;m) ! componentOf(v;m) (A9).
An Attribute can be a Class Variable when shared by all objects of the Class or an Instance
Variable when it represents the particular state of each object.

4.4.3. Terms Dictionary

The definition of the terms present in OOC-O Class Member Module is presented in
Table 4.4.2.

Table 4.4.2 Terms Dictionary of the OOC-O Class Member Module.

Term Definition

Abstract Method Method just composed by its signature [4], that is, it has no body and implementation
[6] and should be implemented or "concreted" in all subclasses [14].

Accessor Method Method providing an interface between the internal data of the object and the external
world [7], that is, it allows access to private instance variables of an object.

Block Instruction group handled by the compiler as a single instruction.

Class Method Method independent of any instance of the class, being invoked by means of message
sent directly to its class rather than its instance [11].

Class Variable Variable independent of any instance of the class [13], whose single copy is shared by
all objects of class [6].

Constructor
Method

Special method that specifies how to create and initialize an object, ensuring that all its
instance variables are properly initialized [4].

Concrete Method Method that, in contrast to abstract method, must have body and implementation.

Destructor
Method

Special method that cleans up unused objects, being explicitly invoked by a operator or
automatically when an object is deallocated [4].

Generic Method Parametrized method used to create instances or specializations of this model at
compile time. For this it declares its own Type Parameter.

Instance Method Method defined in the class scope and invoked by means of an object [4], operating
only on objects of its class [13].

Instance Variable Variable defined in the class scope to represent the state of an object [5], defining its
particular state by means of attributes [6] and values.

Local Variable Variable with small scope and lifetime [11] that exists in memory just during a method
or block, not being visible outside of it.

Overridable
Method

Method that can be overwritten in descendant classes [13].

Non-Overridable
Method

Method that can not be overwritten in descendant classes [13].

Parameter
Variable

Variable declared as formal parameter of methods, constructors, and exception handlers
[6].

Return Type Type of the return value declared for a method. Some methods can only act on the
object state and do not send a return value to the program [5]

Type Parameter Identifier that specifies a generic type name whose instance must set a recognized type
to replate the identifier at runtime.

4.4.4. Ontology Verification

The Table 4.4.3 presents the verification of competency questions listing necessary
elements of the ontology to answer each competency question (CQ).

Table 4.4.3 Verification of the OOC-O Class Member Module.

CQ1 What types of methods are present in an class?
Generic Method ​subtype of ​Method;
Concrete Method ​subtype of​ Method;
Abstract Method subtype of Method;
Non-Overridable Method ​subtype of​ Method;
Overridable Method ​subtype of​ Method.

CQ2 What variables are present into a class?
Member ​component of​ Class;
Attribute (Member Variable) ​subtype of ​Member;
Instance Variable and Class Variable ​subtype of ​ Attribute (Member Variable).

CQ3 What are type parameter of a generic method?
Type Parameter​ component of ​Generic Method.

CQ4 What is a class method?
Concrete Method​ subtype of ​Method;
Class Method​ subtype of ​Concrete Method and Non-Overridable Method.

CQ5 What is a class instance?
Concrete Method​ subtype of ​Method;
Instance Method​ subtype of ​Concrete Method.

CQ6 What types of instance methods are present in an class?
Concrete Method​ subtype of ​Method;
Instance Method​ subtype of ​Concrete Method;
Constructor Method and Destructor Method and Accessor Method ​subtype of ​Instance Method.

CQ7 What is a constructor method?
Concrete Method​ subtype of ​Method;
Instance Method​ subtype of ​Concrete Method;
Constructor Method Method​ subtype of ​Instance Method and Non-Overridable Method.

CQ8 What blocks are present into a method?
Block ​component of ​Concrete Method;
Block ​component of​ Block.

CQ9 What variables are present into a method?
Local Variable ​component of ​Block;
Block ​component of ​Concrete Method;
Parameter Variable ​component of ​Method (Member Variable).

4.4.5. Ontology Validation

The Table 4.4.4 presents the validation of the ontology instantiating their concepts.
For this we use instances of the Java programming language.

Table 4.4.4 Validation of the OOC-O Class Member Module.

Term Instantiation

Abstract Method containCoordinate ​in:
public abstract class Shape{
 public abstract boolean containCoordinate(double x, double y);
}

Accessor Method No Realted in Java

Block {int p= this.width * this.height; return p; }; ​in:
public class Rectangle{
 public int perimeter(){
 int p = this.width * this.height;
 return p;
 };
}

Class Variable initialCoordinateX ​in:
public class Rectangle{
 public statict double initialCoordinateX = 0;
}

Constructor Method Rectangle(int width, int height){}; ​in
public class Rectangle{
 Rectangle(int width, int height){};
}

Concrete Method perimeter​ in:
public class Rectangle{
 public int perimeter(){};
}

Destructor Method finalize ​in:
public class Rectangle{
 protected void finalize() {};
}

Generic Method printShapes​ in:

public class GenericShapes<T>{
 public void printShapes(T type){};
}

Instance Method perimeter​ in:
public class Rectangle{
 public int perimeter(){};
}

Instance Variable width ​in:
public class Rectangle{
 private int width;
}

Local Variable p​ in:
public class Rectangle{
 public int perimeter(){
 int p = this.width * this.height;
 return p;
 };
}

Overridable Method perimeter​ in:
public class Rectangle{
 public int perimeter(){};
}

Non-Overridable
Method

perimeter​ in:
public class Object{
 public final​ Class​ getClass(){};
}

Parameter Variable width and height ​in:
public class Rectangle{
 Rectangle(int width, int height){};
}

Return Type int ​in:
public class Rectangle{
 public int perimeter(){};
}

Type Parameter <T> ​in:
public class Polygon<T>{​}

5. Referências

[1] Turner, R.: Programming languages as technical artifacts. Philosophy & technology
27(3), 377397 (2014)

[2] Turner, R., Eden, A.H.: Towards a programming language ontology. Citeseer (2007)
[3] LaLonde, W.R., Pugh, J.R.: Inside smalltalk, vol. 2. Prentice Hall (1990)
[4] Tucker, A.B.: Programming languages> Principles and Paradigmas. Tata McGraw-Hill

Education (2007)

https://courses.cs.washington.edu/courses/cse341/98au/java/jdk1.2beta4/docs/api/java/lang/Class.html

[5] De Melo, A. C. V., & Da Silva, F. S. C. (2003). Princípios de linguagens de
programação. Edgard Blucher.

[6] Pinheiro, F. A. (2006). Fundamentos de computação e orientação a objetos usando Java.
LTC.

[7] Hunt, J.: Java and object orientation: an introduction. Springer Science & Business
Media (2002)

[8] Phillips, D.: Python 3 object-oriented programming. Packt Publishing Ltd (2015)
[9] Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D.: The java language

specication: Java se 10 edition, 20 february 2018 (2018)
[10] Lutz, M. (2013). Learning python: Powerful object-oriented programming. " O'Reilly

Media, Inc.".
[11] Lewis, S.: The art and science of Smalltalk, vol. 1. Prentice Hall (1995)
[12] Eiffel, E.: Eiel: Analysis, design and programming language. ECMA Standard

ECMA-367, ECMA (2006)
[13] Sebesta, R.W.: Concepts of programming languages. Boston: Pearson, (2012)
[14] Brauer, J.: Programming Smalltalk-Object-Orientation from the Beginning. Springer

(2015)

