
HISTORY, THEORY AND
PRACTICE

Structure
• People
• Background
• MLT*
• ML2 Language
• Example Model
• ML2 Editor
• Installing ML2
• Questions and Answers

People
Victorio Albani Carvalho
MLT and MLT*

João Paulo Andrade Almeida
Supervisor of the MLT team

Claudenir Morais Fonseca
ML2 and MLT*

Giancarlo Guizzardi
Co-supervisor of the MLT team

Fred Brasileiro
MLT for the Semantic Web

Background

• MLT was defined in 2015 with the work of Victorio
Carvalho, at the time, PhD student at the Federal
University of Espírito Santo (UFES) – Brazil.

• He worked under the supervision of João Paulo A.
Almeida and Giancarlo Guizzardi in order to provide
understanding of multi-level ontologies

• As result, he proposed the MLT theory as theoretical
foundation for the comprehension of MLM

Background

• MLT provided a solid foundation for MLM, organizing
multi-level entities whose possible instances fall within a
single instantiation order

• MLT* emerged as a generalized version MLT able to
account for orderless entities, whose possible instances
fall into different instantiation orders

• In that sense, MLT* is able to account for very general
types, such as Entity or Thing

Background

• The theory informed the design of a textual syntax to
allow the specification of MLT* based models
• ML2 is described in the M.Sc. Thesis of Claudenir Fonseca

• The ML2 language allows the user to define all sorts of
entities and relations foreseen by the theory

• Additionally, other basic features of modeling languages
are also provided, such as attributes, references and
generalization sets

MLT*: Theoretical Basis for
Multi-Level Conceptual Modeling
• Theory for interpreting multi-level domains
• Described in first-order logics
• Formalized (Alloy and TPTP)
• Relies solely on the instance of relation in order to build

its theorems and definitions

Before language comes understanding

• To help us understand, accessible formalization

• Here we present only a non-temporal/non-modal version of the theory for
simplicity

Basic Notions
•

Structural Relations
•

Structural Relations

Orthogonal
specializations

Accounting for Stratification
•

As high as you need …

Without necessitating
infinitely many orders

Beyond Stratification
•

• Here you can decide whether you want to:
• Commit to orderless types

• Telos ω-properties
• Cyc VariedOrderCollections

• Commit to ordered types only (strictly stratified)

• (or leave your theory general, so it encompasses both
possibilities)

Special cases
• Two-level models:
• Just add an axiom stating that the only basic type is

Individual

• Infinitely many orders:
• Just add an axiom stating that for every type there is a

powertype

OrderedType, OrderlessType, Type, Entity

•

Beyond Stratification
• The constants of the theory build a top-level model that

can be used for the interpretation of multi-level scenarios
• The relations among these entities are consequences of

their very definitions

Beyond Stratification
• An example of a domain type that defies the stratified

scheme is �Social Entity�, whose extension includes
both individuals and other types

Structural Relations
•

Structural Relations
•

Structural Relations
•

Structural Relations
• During the formalization of the theory, a set of theorems

emerged as constraints on the properties of the relations,
as well as for their domains and ranges

Relation (t → t�) Domain Range Constraint Properties

specializes(t,t')
Orderless Orderless

if t and t' are ordered types,
they must be at the same type
order

Reflexive,
antissymetric,

transitive
Ordered Orderless
Ordered Ordered

properSpecializes(t,t')
Orderless Orderless Irreflexive,

antissymetric,
transitive

Ordered Orderless
Ordered Ordered

isPowertypeOf(t,t')
Orderless Orderless t cannot be a first-order type if t

and t' are ordered types, t must
be at a type order immediately
above the order of t�

Irreflexive,
antissymetric,
antitransitiveOrdered Ordered

Structural Relations
• During the formalization of the theory, a set of theorems

emerged as constraints on the properties of the relations,
as well as for their domains and ranges

Relation (t → t�) Domain Range Constraint Properties

categorizes(t,t')
disjointlyCategorizes(t,t')

Orderless Orderless t cannot be a first-order type
if t and t' are ordered types, t
must be at a type order
immediately above the order of
t�

Irreflexive,
antissymetric,
nontransitive

Ordered Orderless
Ordered Ordered

completelyCategorizes(t,t')
partitions(t,t')

Orderless Orderless Irreflexive,
antissymetric,
antitransitiveOrdered Ordered

isSubordinatedTo(t,t')

Orderless Orderless t and t' cannot be first-order
types
if t and t' are ordered types,
they must be at the same type
order

Irreflexive,
antissymetric,

transitive
Ordered Orderless

Ordered Ordered

ML2 Language
• Multi-Level Modeling Language
• Textual syntax
• Focused on the development of domain conceptual

models
• Allows the specification of all sort of entities and relations

foreseen by MLT*
• Incorporates MLT* rules as semantically-motivated

languages constraints
• Support to other basic constructs of traditional modeling

languages:
• Attributes
• References
• Generalizations sets

EC
O

R
E M

etam
etam

odel

M
L2 M

etam
odel

M
L2 m

odel

ML2 Metamodel is quite
Similar to the MLT*

Core Concepts
• Core concepts of metamodel reflecting the theory

constants
• Only metaclasses in gray can be instatiated

Core Concepts
• Classes and instances are handled both at the same

level in regard to the metamodel
• The instantiation relation from ML2 is a common

reference between two instances of the metamodel

Core Concepts
• The simple syntax is design to improve readability
• Only high-order entities require the specification of an

order
• For users of traditional two-level languages, the syntax

syntax uses a familiar vocabulary for declaring common
classes and instances

individual Eva : Entity , Person;

class Person : PersonType, Entity;

order 2 class PersonType : Entity isPowertypeOf Person;

orderless class Entity;

Generalization Sets
• Inspired on the UML usage of generalization sets
• Aggregates specializations of a common class that

following the same criteria of definition
• Based on the powertype-pattern in UML, allows the

identification of a categorizer class that represent the
involved criteria

• Disjoint and complete constraints are also supported

Generalization Sets
• Both categorization relations and generalization sets

affect the specializations of the base class
• Not all combinations of categorizations and

disjoint/complete constraints are valid
• This aspect led to the definition of proper semantically-

motivated constraints

Generalization Sets
• Syntactic constraints detect invalid combinations of

generalization set constraints and categorization
relations

Categorization
Relation

Generalization Set Constraints

Disjoint Overlapping
Complete Incomplete Complete Incomplete

Partitions Enumerated Not Enumerated Invalid Invalid

Disjoint
Categorization Invalid Silent Invalid Invalid

Complete
Categorization

Not Enumerated Not Enumerated Silent Not Enumerated

Categorization Invalid Not Enumerated Invalid Silent

Generalization Sets
disjoint complete genset person_by_age

general Person

categorizer PersonTypeByAge

specifics Child, Teenager, Adult, Elder;

order 2 class PersonTypeByAge partitions Person;

class Person : PersonPowertype;

class Child : PersonTypeByAge specializes Person;

class Teenager : PersonTypeByAge specializes Person;

class Adult : PersonTypeByAge specializes Person;

class Elder : PersonTypeByAge specializes Person;

Features and
Assignments
• ML2 supports the definition of features and assignments
• Features and assignments must be either attributes or

references

Features and
Assignments
• A reference’s type can be any given class
• An attribute’s type must be a primitive type (String,

Number or Boolean) or some complex DataType

Features and
Assignments
• Features and features assignments are handled at the

same implementation level, allowing assignments for
entities in any given order

orderless class Entity : Entity {

name : String

name = "Entity"

};

class Person : Entity {

name = "Person"

};

individual Elvis : Entity {

name = "Elvis Presley"

};

Features and
Assignments
• ML2 features also support other common mechnisms in

modelling
• Cardinalities
• Subsetting
• Opposite references

orderless class Artifact {

ref isCreatedBy : [0..*] Agent isOppositeTo creator

};

class Agent {

ref creator : [0..*] Artifact isOppositeTo isCreatedBy

};

class Designer specializes Agent {

ref designed : [0..*] Artifact subsets creator

};

Regularity Features
• In addition to shallow instantiation, ML2 also supports

deep instantiation through regularity features
• This mechanism allows features of higher order to

regulate the assignments of others at a lower order

Regularity Features
• ML2 considers six type of regularities

• Minimum Value
• Maximum Value
• Determined Value
• Allowed Values
• Determined Type
• Allowed Types

Regularity Features
• Minimum and Maximum Values

• The regularity feature determines the limits of that can be
assigned to the regulated one

order 2 class CellphoneModel categorizes Cellphone {

regularity maximumStorageCapacity : Number

determinesMaxValue storageCapacity

regularity minimumStorageCapacity : Number

determinesMinValue storageCapacity

};

class Cellphone { storageCapacity : Number };

class IPhone5 : CellphoneModel specializes Cellphone {

maximumStorageCapacity = 64

minimumStorageCapacity = 16

};

Regularity Features
• Determine Value

• The regularity feature determines the actual values that can
be assigned to the regulated one

• Assignment of the regularity features may add enough
information to the model (see �Device321�)

class Cellphone { screenSize : Number };

order 2 class CellphoneModel categorizes Cellphone {

regularity instancesScreenSize : Number determinesValue screenSize

};

class IPhone5 : CellphoneModel specializes Cellphone {

instancesScreenSize = 4.1

};

individual Device123 : IPhone5 { screenSize = 4.1 };

individual Device321 : IPhone5;

Regularity Features
• Allowed Values

• The regularity feature determines the possible values to be
assigned to the regulated one

datatype Color { red:Number green:Number blue:Number };

individual White:Color { red=255 green=255 blue=255 };

individual Red:Color { red=255 green=0 blue=0 };

class Cellphone { color : Color };

order 2 class CellphoneModel categorizes Cellphone {

regularity availableColors : [1..*] Color

determinesAllowedValues color

};

class IPhone5 : CellphoneModel specializes Cellphone { availableColors = {White,Red} };

individual WhiteDevice : IPhone5 { color=Red };

individual RedDevice : IPhone5 { color=White };

Regularity Features
• Determine Type

• The regularity feature determines the actual type of entity
that can be assigned to the regulated one

order 2 class ProcessorModel categorizes Processor;

class Processor;

class A6 : ProcessorModel specializes Processor;

order 2 class CellphoneModel categorizes Cellphone {

regularity ref compatibleProcessor : ProcessorModel

determinesType installedProcessor

};

class Cellphone { ref installedProcessor : Processor };

class IPhone5 : CellphoneModel specializes Cellphone {

ref compatibleProcessor = A6

};

Regularity Features
• Allowed Types

• The regularity feature determines the possible types of
entities that can be assigned to the regulated one

class CellphoneCharger;

order 2 class CellphoneChargerModel;

class UKCellphoneCharger : CellphoneChargerModel specializes CellphoneCharger;

class USACellphoneCharger : CellphoneChargerModel specializes CellphoneCharger;

class Cellphone { ref bundledCharger : CellphoneCharger };

order 2 class CellphoneModel categorizes Cellphone {

regularity ref availableChargerModels : [0..*] CellphoneChargerModel

determinesAllowedTypes bundledCharger

};

class IPhone5 : CellphoneModel specializes Cellphone {

ref availableChargerModels = { UKCellphoneCharger, USACellphoneCharger}

};

individual Charger321 : UKCellphoneCharger;

individual Device321 : IPhone5 { ref bundledCharger=Charger321 };

Example Model

• With ML2 when are able to build very general

conceptualization

• A quick example model in ML2, is the conceptualization

of it’s own foundation theory, MLT*

• We can describe the theory constant as elements in a

ML2 model

• In the next slides we are going to use an UML-based

representation of the models in order to improve the
presentation, however, the definition of a visual syntax

for ML2 is still topic of an future research

Example Model

orderless class Entity : OrderlessClass;

orderless class Class : OrderlessClass specializes Entity isPowertypeOf Entity;

class Individual : FirstOrderClass specializes Entity;

disjoint complete genset has_instances

general Entity

specifics Class, Individual;

Example Model

orderless class OrderlessClass : OrderlessClass specializes Class;

orderless class OrderedClass : OrderlessClass specializes Class;

disjoint complete genset fixed_order

general Class

specifics OrderedClass, OrderlessClass;

Example Model

order 2 class FirstOrderClass : HighOrderClass specializes OrderedClass

isPowertypeOf Individual;

orderless class HighOrderClass : OrderlessClass specializes OrderedClass;

disjoint complete genset high_order

general OrderedClass

specifics FirstOrderClass, HighOrderClass;

ML2 Editor
• The ML2 Editor is an Eclipse-based IDE for the

development of ML2 models
• Built with the Xtext framework
• Provides the basic features of an traditional IDE for an

conceptual modeling language
• Validation of semantically-motivated syntactical rules

ML2 Editor

ML2 Editor
• Syntax coloring
• Hover information and in-code documentation
• Error checking

ML2 Editor
• Auto-completion
• Go to declaration
• Rename refactoring
• Find references

ML2 Editor
• The table bellow presents some of the syntax rules

checked by the ML2 Editor
• These rules are lively checked

Type Syntactic Rules
Class Specializations can only occurs between entities of same order or orderless classes.
Class Ordered classes can only be powertype of classes in the order immediately below.
Class Classes cannot be in subordination cycles.
Class An instance of a subordinated class must specialize some instance of the related

subordinator class.
GeneralizationSet The categorizer class must categorize the general class.
Feature Regularity types of �maximum value� and �minimum value� applies only to number

attributes.
Feature Regularity types of �determined types� and �allowed type� applies only to references.
Feature A regulated feature assignment must conform to the regularity feature assignment.
FeatureAssignment A feature assignment must conform to the multiplicity and type of its associated feature.

Installing the ML2 Editor
• Go to https://github.com/claudenirmf/ML2-Editor
• Download the compressed file in the release and extract

it in your computer
• On an instance of the Eclipse IDE, go to Help > Install

New Software…
• We suggest you to use the Eclipse IDE for Java and DSL

Developers since it offers the minimum set of tools required
for the ML2 Editor

• Click on Add, enter the path to the folder you extracted to
your computer (i.e. ../repository) and click on Ok

https://github.com/claudenirmf/ML2-Editor

Installing the ML2 Editor
• The ML2 plugin for Eclipse should appear on the list of

available software now. Select it and proceed its
installation

• In the end, you will required to restart your Eclipse in
order to activate the ML2 plugin

Creating a Project
• On your Eclipse, create a General Project
• Within this project you should create your �.ml2� files,

and the editor you consider the models in that project
sharing a common context

• When the first �.ml2� file is opened, a message will
appear on the screen asking to active the Xtext
capabilities in the project. Please select �Yes�.

• Now you can write your ML2 models and reference
entities between the different models

Questions and Answers

Thank you!

See also
• M.Sc. Thesis Claudenir Fonseca (includes an ML2 model

for the bicycle challenge of MULTI 2017)

class PhysicalObject { att weight : Number };

class ComplexObject specializes PhysicalObject {
ref components : [1..*] Component };

class Component specializes PhysicalObject;
class ComplexComponent specializes Component, ComplexObject;

class Bicycle specializes ComplexObject {
ref frame : Frame subsets components
ref fork : Fork subsets components
ref handleBar : HandleBar subsets components
ref frontWheel : Wheel subsets components
ref rearWheel : Wheel subsets components

};

class Frame specializes Component;
class Fork specializes ComplexComponent;
class HandleBar specializes Component;
class Wheel specializes Component;
class Suspension specializes Component;
class MudMount specializes Component;

class PhysicalObject {
att weight : Number
att color : [0..*] Color

};
datatype Color { red:Number green:Number blue:Number };

order 2 class ProductType categorizes Product {
regularity instancesRegularSalesPrice : Number

determinesValue regularSalesPrice
};
class Product {

att regularSalesPrice : Number
att salesPrice : Number
att purchasePrice : Number

};

class Bicycle specializes PhysicalObject, ComplexObject, Product {
ref frame : Frame subsets components

ref fork : Fork subsets components
ref handleBar : HandleBar subsets components
ref frontWheel : Wheel subsets components
ref rearWheel : Wheel subsets components

};
class Frame specializes Component, Product {

att serialNumber : String
};

class Bicycle specializes PhysicalObject, ComplexObject, Product {
att suitableForToughTerrains : Boolean
att suitableForUrbanAreas : Boolean
att suitableForRacing : Boolean

};

class CityBicycle specializes Bicycle;
class MountainBicycle specializes Bicycle {

ref rearSuspension : [0..1] Suspension subsets components
};
class RacingBicycle : RacingBicycleType specializes Bicycle;

class RacingBicycle specializes Bicycle { att isCertified : Boolean };

class RacingFrame specializes Frame {
att topTubeLength : Number
att downTubeLength : Number
att seatTubeLength : Number

};

class SteelFrame specializes Frame;
class AluminumFrame specializes Frame;
class CarbonFrame specializes Frame;

disjoint genset
general Frame
specifics SteelFrame, AluminumFrame, CarbonFrame;

order 2 class RacingBicycleType categorizes RacingBicycle {

regularity minimumWeight : Number determinesMinValue weight

regularity ref allowedFrameTypes : [0..*] FrameType

determinesAllowedTypes frame

};

class ProRacingBicycle :RacingBicycleType specializes RacingBicycle {

att minimumWeight = 5.200

ref allowedFrameTypes = {AluminumFrame, CarbonFrame}

};

class AluminumWheel specializes Wheel;

class CarbonWheel specializes Wheel;

class ChallengerA2XL :RacingBicycleType, ProductType specializes ProRacingBicycle {

att instancesRegularSalesPrice = 4999.00

ref frame : RocketA1XL subsets frame

};

order 2 class PhysicalObjectType isPowertypeOf PhysicalObject {

att instancesWeight : [0..1] Number

};

class ProRacingFrame specializes RacingFrame;

class RocketA1XL :ProductType specializes ProRacingFrame {

att instancesWeight = 0.920

};

