
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Using Reference Domain Ontologies to Define the

Real-World Semantics of Domain-Specific Languages

Victorio A. de Carvalho1,2, João Paulo A. Almeida1, and Giancarlo Guizzardi1

1Ontology & Conceptual Modeling Research Group (NEMO)

Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
2Research Group in Applied Informatics, Informatics Department,

Federal Institute of Espírito Santo (IFES), Colatina, ES, Brazil

victorio@ifes.edu.br; jpalmeida@ieee.org; gguizzardi@inf.ufes.br

Abstract. This paper proposes a principled approach to the definition of real-

world semantics for declarative domain-specific languages. The approach is

based on: (i) the explicit representation of the admissible states of the world

through a reference domain ontology (which serves as semantic foundation for

the domain-specific language), (ii) a representation of the valid expressions of a

domain-specific language (to determine the abstract syntax of the language),

and (iii) the rigorous definition of the relation between the abstract syntax and

the reference domain ontology (to define the real-world semantics of the lan-

guage). These three elements of the approach are axiomatized in three corre-

sponding logic theories, enabling a systematic treatment of real-world seman-

tics, including formal tooling to support language design and assessment.

Keywords: Ontology, Metamodel, Domain-Specific Language, Semantics.

1 Introduction

Conceptual modeling is generally considered a fundamental activity in information

systems engineering [1], and comprises the use of diagrammatic languages for com-

munication, understanding and problem solving regarding a universe of discourse.

The effectiveness of a conceptual modeling language to support the aforementioned

tasks is strongly related to the language’s domain appropriateness, i.e., to the lan-

guage’s ability to express the relevant characteristics of the domain at hand, as dis-

cussed by a number of authors [2, 3],

A language designer must, therefore, understand the phenomena (or domain) that

should be covered by the language and propose symbolic structures that will empower

prospective language users to efficiently carry out certain tasks concerning the repre-

sented phenomena.

This requires the design of a language with some form of ‘correspondence between

its constructs and things in the external world’ [4]. We call such a correspondence

real-world semantics, following [5]. Consider for example a domain-specific lan-

guage to describe genealogical relations. A real-world semantics for this language

would provide meaning for the various language constructs in terms of parenthood or

ancestry relations between persons, thereby enabling its expressions (or models) to be

used as a vehicle to talk about parenthood or ancestry between persons of interest.

Although essential to language design and semantic interoperability tasks, the real-

world semantics is often defined only informally for modeling languages. As a conse-

quence, no systematic treatment of real-world semantics is possible, and the designer

must face semantic issues with little methodological support. In this paper, we address

this gap by proposing a principled approach to real-world semantics definition for

declarative domain-specific languages. This approach is based on: (i) the explicit

representation of the admissible states of the world through a reference domain ontol-

ogy (which serves as semantic foundation for the domain-specific language), (ii) a

representation of the valid expressions of a domain-specific language (to determine

the abstract syntax of the language), and (iii) the rigorous definition of the relation

between the abstract syntax and the reference domain ontology (to define the real-

world semantics of the language). These three elements are axiomatized in three cor-

responding logic theories, enabling a systematic treatment of real-world semantics,

including formal tooling to support language design and assessment.

From the methodological perspective, the approach promotes the separation of

concerns enabling designers to handle semantic issues separately from other language

design concerns. By defining the semantics of a language in terms of a reference do-

main ontology, the language designers explicitly account for the language’s ability to

represent domain features truthfully [6].

Although some of us have defended in [6] that the abstract syntax of a language

should ideally be isomorphic to an ontology underlying the language, this would only

apply to a particular kind of (ideal) language intended to represent complete

knowledge about a domain. This is not always feasible or desirable due to pragmatic

and language design issues. Thus, in this paper we relax the stringent isomorphism

requirement, supporting thus a more flexible relation between language metamodels

and reference ontologies.

The remainder of the paper is structured as follows: section 2 discusses the notion

of reference domain ontology contrasting it with the notion of language metamodels;

section 3 discusses our approach to define real-world semantics for domain-specific

languages; section 4 introduces our running example, defining a reference domain

ontology for genealogy; section 5 defines the syntax of a domain-specific language to

capture genealogy trees, specifying a semantics for this DSL based on the ontology

described earlier; section 6 shows the use of formal tools to analyze the language in

the light of some properties defined in our approach; section 7 presents some addi-

tional reflections on ontologies, metamodels and the real-world semantics definition;

section 8 discusses related work and section 9 presents conclusions and future work.

2 Reference Domain Ontologies and Language Metamodels

An ontology can be defined as a set of entities acknowledged by a theory or system of

thought [7]. In the original definition of formal ontology in philosophy, the “set of

entities” in question refer to domain-independent categories such as object, quality,

relation, event, type, situation, among others. In a modern jargon, these are termed

Foundational Ontologies [8, 9]. In contrast, in computer science (in a tradition which

can be traced back to Hayes’ seminal paper [10]), ontologies are specifications, i.e.,

particular engineering artifacts meant to represent “sets of entities” of a different na-

ture, namely, those entities whose existence is countenanced by a conceptualization of

a particular area of application or knowledge (e.g., law, cell biology, chemistry, soft-

ware engineering). These are termed domain ontologies [8].

In the past 15 years, an increasingly large number of domain ontologies have been

constructed in a number of domains. As discussed in depth in [6], domain ontologies

can play an important role in the evaluation, (re)design and interoperability of do-

main-specific conceptual modeling languages informing the axiomatisation for their

abstract syntax and formal semantics and guiding the design of pragmatically more

efficient systems of visual concrete syntax. However, in order to play this role, these

ontologies must be constructed as reference ontologies, i.e., they must be constructed

with the sole objective of making the best possible description of a certain domain or

portion of reality, capturing a shared conceptualization of that specific domain. In

particular, these ontologies should be able to formally characterize the exact world

states which are deemed admissible by that conceptualization1. Furthermore, as the

author demonstrates in [6], in order to systematically achieve this desiderata, domain

ontologies should be constructed with the support of a proper foundational ontology.

In this sense, a foundational ontology, determines all possible world states according

to fundamental ontological commitments (relating to notions of space, time, object,

event, action, etc.). A domain ontology aligned with a foundational ontology, defines

a subset of these states selecting only those admissible in a specific domain, as shown

in Fig. 1 (for a foundational ontology and two overlapping domain ontologies).

Fig. 1. Sets of admissible world states according to different domain ontologies

Language metamodels are often captured in frame-based languages (such as UML,

MOF, Ecore) and enriched with additional constraints in order to define syntactic

rules of the language that cannot be captured directly in the frame-based language.

Examples of language used to define such syntactic constraints include OCL and first-

order logic. In the remainder of this paper, we use the term “abstract syntax” referring

to the syntactic rules implicit in the metamodel as well as those additional constraints.

Fig. 2 illustrates the role of a language’s abstract syntax. It defines the set of syn-

tactically valid models of a language, as a subset of all possible models that can be

instantiated from metamodels expressible in a given language (such as, e.g., Ecore).

1 A further analysis of the relation between ontologies and conceptualizations is outside the

scope of this paper. We refer the reader to [6], which accounts for this relation.

Fig. 2. Sets of language expressions according to different metamodels

Note that Fig. 1 and Fig. 2 are analogous with the important difference that, while

Fig. 1 concerns states of the world deemed admissible by reference domain ontolo-

gies, Fig. 2 concerns symbolic expressions deemed syntactically valid in domain-

specific languages. In our approach, we represent both reference domain ontologies

and a language’s abstract syntax through logic theories. Although represented in a

similar fashion, the logic theories have clear and distinct roles. A reference domain

ontology should aim solely at describing phenomena of reality representing a certain

conceptualization and is not influenced by language design issues. The logic theory

that captures a reference ontology quantifies over real-world entities. In contrast, a

metamodel (and additional constraints) should define a language syntax capable of

meeting information demands about phenomena of reality for some specific task.

Thus, it quantifies over symbolic expressions (instead of real-world entities).

3 An Approach for Real-World Semantics Definition

In order to provide real-world semantics for a domain-specific language, we relate the

valid models of the language to corresponding world states that are deemed admissi-

ble by a reference domain ontology. Since both language syntax and reference domain

ontologies are axiomatized into logic theories, that task can be accomplished with a

third logic theory that quantifies over symbolic expressions and world states at the

same time. The resulting relation is depicted schematically in Fig. 3.

Fig. 3. Real-world semantics definition

By formalizing the correspondence between language models and world states, we

can characterize an important property of a language: we say that a language has a

well-defined real-world semantics according to a reference ontology iff each of its

(syntactically-correct) models is about (at least one) admissible world according to the

ontology. A language that fails to have this property is one that allows the definition

of meaningless models, i.e., models with no correspondence to the phenomena they

intend to represent. We consider it thus a minimum semantic requirement2.

2 The choice of reference domain ontology is clearly important in this process. This is discussed

in section 7.

This approach also allows us to formally characterize an important class of syntac-

tic constraints, those we call semantically-motivated syntactic constraints. These con-

straints have the purpose of reflecting real-world rules into a language abstract syntax.

If a language admits models that are not about any admissible world state, it suggests

that the language syntax may lack semantically-motivated syntactic constraints. In

other words, if the set of semantically-motivated syntactic constraints is strong

enough, the language can be said to have a well-defined real-world semantics. Con-

versely, if we suppose that a language has a well-defined real-world semantics, then

all its semantically-motivated syntactic constraints should be entailed by the remain-

der of the unified theory, i.e. by the semantic mapping axioms in tandem with the

ontology axioms. This means that the ontology axioms may be used to shape the defi-

nition of the language, in particular, helping in abstract syntax definition.

To illustrate the approach and its implications, we present an example to show how

the three logic theories are combined to accomplish real-world semantic definition.

We show the use of the Alloy formal method [11] to guarantee that the unified theory

is consistent and to identify which syntactic constraints are semantically-motivated.

4 A Reference Domain Ontology in Genealogy

This section presents an ontology in the genealogy domain which will be used later to

define the semantics of a domain-specific language. Our approach to present this on-

tology is to illustrate it with an OntoUML diagram [8], and then present the axioms

that are not implied by this diagram.

OntoUML specializes the UML class diagram by differentiating various categories

of classes according to taxonomy of types in the Unified Foundational Ontology

(UFO) [8]. In an OntoUML diagram some ontological distinctions of UFO are repre-

sented as stereotypes. A class with a <<kind>> stereotype applies necessarily to its

instances (e.g., instances of Person cannot cease to be so without ceasing to exist) and

provides a uniform principle of identity for them. A class stereotyped as <<kind>>

may be specialized in other rigid classes stereotyped as <<subkind>> (e.g., Man and

Woman). A <<role>> is an anti-rigid concept that classifies instances through the

relation properties the instances bear in the scope of a relational context. In this paper,

we consider that this relational context can be a material relation or an event (e.g., a

Man plays the role of MaleProcreator only in the scope of a Conception event, and

does not cease to exist when it no longer plays that role). So, a class stereotyped with

<<role>> classifies its instances dynamically. Finally, a <<phase>> is an anti-rigid

concept that defines a partition of a <<kind>> depending on one or more of its in-

trinsic properties (e.g., a Person can be said to be in either of the two phases: Liv-

ingPerson or DeceasedPerson). Fig. 4 depicts the OntoUML diagram that illustrates

the main concepts of the ontology.

The proposed domain reference ontology defines that the (biological) ancestry rela-

tionships are derived from Conception events. It is based on the stance that human

beings are products of instantaneous Conception events, which occur when a human

male sperm unites with a human female oocyte egg. Thus, each human being (Person)

is the product of a Conception event. For the sake of simplicity, we consider that, in

the case of identical multiple siblings, several Conceptions occur at the same time

boundary. In addition to the Person who plays the role of Offspring (the product of

the Conception) two other Persons participate in a Conception event, namely: (i) a

Man, playing the role of MaleProcreator and (ii) a Woman on the role of FemalePro-

creator. We assume that the product of the Conception event is considered a Liv-

ingPerson (i.e., a fetus is a living person even before its birth). On the other hand,

both LivingPersons and DeceasedPersons may participate in a Conception as procrea-

tors (i.e., the ontology considers the possibility of artificial insemination).

Fig. 4. A domain ontology about genealogy in OntoUML

We formalize the ontology as a theory in many-sorted first-order logic, quantifying

over possible states of the world and entities that may exist (objects) or occur

(events). Thus, we assume two disjoint sets of entities: a set W of worlds and a set U

of entities that are typed by the classes present in the OntoUML diagram. In order to

represent the dynamic of the change in world states, we use a predicate next(w1,w2)

which holds between a world w1 and all the world states that follow it in time. We

consider next represents an asymmetric, irreflexive, transitive and completely ordered

relation (i.e. a strict total order relation) between worlds. We further assume: (i) A

binary predicate for each kind, subkind and phase from the OntoUML diagram, name-

ly, Person(w,p), Man(w,p), Woman(w,p), LivingPerson(w,p) and DeceasedPer-

son(w,p) (e.g. Person(w,p) holds if an entity p is an instance of Person and exists in a

world w); (ii) A binary predicate representing the Conception event (e.g. Concep-

tion(w,c) holds if c is an occurrence of Conception that happens in the time boundary

of a world w), and; (iii) A ternary predicate for each Role from the OntoUML dia-

gram, namely, isMaleProcreator(w,c,p), isFemaleProcreator(w,c,p) and isOff-

spring(w,c,p) (e.g. isOffspring (w,c,p) holds if an entity p is an instance of Person and

an entity c is an instance of Conception, the person p plays the role of Offspring in the

context of the Conception c and both, c and p, exist in a world w).

For the sake of brevity, the axioms implied by the OntoUML diagram (classes’ ri-

gidity, lower and upper bound for cardinality constraints, specialization relations) are

omitted. Those not expressed by the OntoUML diagram are presented in Table 1.

Axioms A1 and A2 determines that every Person must play the role of Offspring of

one Conception event in which two other Persons play the role of Procreators, except

for the case of the first Persons considered to exist (the “original” persons). We as-

sume that these Persons come into existence in the same world. The origin of these

Persons is outside the scope of this ontology (as it is neutral with respect to accounts

of the origin of humans such as biological evolution, theological creation).

Axioms A6 and A7 state that the Man and the Woman who play the roles of pro-

creators in a Conception event are considered, respectively, the father and the mother

of the person who plays the role of Offspring in such event. Thus, we can infer that

every “non-original” Person has exactly one father and exactly one mother. Axiom

A9 defines the ancestry relationship based on the parenthood relation (defined in A8).

Thus, the ontology defined here precisely defines the ancestry relationships explain-

ing the concepts of parent and ancestor in terms of the concept of Conception event.
Table 1. Axioms not implied by the OntoUML diagram

A1
A Person who plays the role of Offspring in a world does not exist in previous worlds.

∀w:W, ∀p,c:U (isOffspring(w, c, p) → ¬∃w':W(next(w', w) ∧ Person(w', p)))

A2

If a Person exists in a world w and it does not exist in any world previous to w then this

Person plays the role of Offspring in w or he/she is an “original” person(i.e., there are no

persons in worlds previous to w).

∀w,w':W, ∀p:U ((next(w', w) ∧ Person(w,p) ∧ ¬Person(w', p)) →

 (∃c:U (isOffspring(w, c, p)) ∨ ¬∃p':U (Person(w', p'))))

A3
Once a Person exists in a world w, it will exist in all worlds subsequent to w.

∀w,w' :W, ∀p:U(((Person(w, p)∧ next(w, w')) → Person(w', p))

A4

A Person cannot simultaneously play the roles of Procreator and Offspring.

∀w:W, ∀c,p:U (isOffspring(w, c, p) →

 ¬∃c':U (isFemaleProcreator(w, c', p) ∨ isMaleProcreator(w, c', p)))

A5
A LivingPerson eventually becomes a DeceasedPerson.

∀w:W, ∀p:U (LivingPerson(w, p) → ∃w':W(next(w, w') ∧ DeceasedPerson(w', p)))

A6

If a person is a DeceasedPerson in a world it remains a DeceasedPerson in all subsequent

worlds.

∀w, w':W, ∀p:U ((DeceasedPerson(w, p) ∧ next(w, w'))→ DeceasedPerson(w', p))

A7

The father of a person y is the person x who played the role of MaleProcreator in the Con-

ception in which y played the role of OffSpring.

∀w:W, ∀x,y:U (FatherOf(w, x, y) ↔ ∃w':W, ∃c:U(((w'=w) ∨ next(w', w)) ∧

 isOffspring(w', c, y) ∧ isMaleProcreator(w', c, x)))

A8

The mother of a person y is the person x who played the role of FemaleProcreator in the

Conception in which y played the role of OffSpring.

∀w:W, ∀x,y:U (MotherOf(w, x, y) ↔ ∃w':W,∃c:U(((w'=w)∨ next(w', w)) ∧

 isOffspring (w', c, y) ∧ isFemaleProcreator(w', c, x)))

A9
A person x is a parent of a person y iff x is y's father or mother

∀w:W, ∀x,y:U (ParentOf(w, x, y) ↔(FatherOf(w, x, y) ∨ MotherOf(w, x, y)))

A10

A person x is ancestor of a person y iff x is parent of y or x is ancestor of y’s parent.

∀w:W, ∀x,y:U (AncestorOf(w, x, y) ↔

 ParentOf(w, x, y) ∨(∃z:U(ParentOf(w, z, y) ∧ AncestorOf(w, x, z))

5 A DSL to Represent Genealogy Trees – Syntax and Semantics

In this section, we define the abstract syntax of a DSL for describing genealogy trees,

and later we define the semantics for this language in terms of the genealogy ontology

presented in the previous section.

5.1 Abstract Syntax Definition

Considering that a genealogy tree aims to map the ancestry of a given person, a DSL

for representing genealogy trees must provide constructs to represent persons and to

represent parenthood. Fig. 5 depicts the metamodel of such a DSL represented in

Ecore. From now on we will refer to this language as DSL1. The names of metamodel

elements are prefixed with “M” to avoid confusion with the ontology concepts.

Fig. 5. A metamodel for representing genealogical trees (DSL1)

In the depicted metamodel, the MGenealogyTree class represents the genealogy

tree itself. An MGenealogyTree is composed by instances of MPerson. The MPerson

construct represents persons in a genealogy tree. The MPersons that compose a MGe-

nealogyTree are divided into two groups according to their role in the tree: (i) one

MPerson, identified by the mRefPerson association, represents the person whose an-

cestry is modeled by the tree, called the reference person of the tree; (ii) the other

MPersons that composes the tree are referenced by the mRefAncestors association and

represent the ancestors of the reference person. An MPerson may be associated with

one MMan through an mFatherOf relation. In turn, an mMotherOf relation may be

used to associate an MPerson with an MWoman. The mFatherOf and the mMotherOf

constructs represent the parenthood relationships between the represented persons.

We define the language’s abstract syntax with a theory in many-sorted first-order

logic, quantifying over well-formed instances of the metamodel and over all possible

instances of the language constructs. Thus, we assume two disjoint sets of symbolic

entities: a set M of well-formed models (instances of the top-level container MGene-

alogyTree), and a set P of instances of MMan and MWoman. We further assume: (i)

Binary predicates to represent the mRefPerson and the mRefAncestors containment

relations, namely mRefPerson(m,p) and mRefAncestor(m,p) (e.g. mRefPerson(m,p)

holds if an entity p is the reference person of a model m); (ii) Binary predicates to

represent the constructs MMan and MWoman, namely MMan(m,p) and MWom-

an(m,p) (e.g. MMan(m,p) holds if an entity p is an instance of MMan and is part of a

model m), and; (iii) Ternary predicates to represent mFatherOf and MMotherOf rela-

tions, namely MFatherOf(m,a,b)and MMotherOf(m,a,b) (e.g. MFatherOf(m,a,b) holds

if, in a model m∈M, an instance a of MMan is associated to an MPerson b through a

mFatherOf relation). For the sake of brevity, we omit here syntactic constraints that

are implied by the metamodel (cardinality constraints, specialization relations).

The syntactic constraints not implied by the metamodel are shown in Table 2. The

constraint C1 is a helper defining the MAncestorOf relation deriving it from MFath-

erOf and MMotherOf relations. The C2 constraint guarantees that a genealogy tree is

all connected. C3 ensures that there are no ancestry cycles in a tree. Finally, C4 de-

fines that the father and the mother of the MRefPerson must be represented.

Table 2. Syntactic constraints for DSL1 (not implied by the metamodel)

C1 ∀m:M, ∀a,b:P (MAncestorOf(m, a, b) ↔

 MFatherOf(m, a, b) ∨ MMotherOf(m, a, b) ∨

 ∃c:P((MFatherOf(m, c, b) ∨ MMotherOf(m, c, b)) ∧ MAncestorOf(m, a, c))

C2 ∀m:M, ∀a,b:P ((MRefPerson(m, a) ∧ MRefAncestor(m, b)) → MAncestorOf(m, b, a))

C3 ∀m:M, ∀a,b,c:P (MAncestorOf(m, a, b) → ¬ MAncestorOf(m, b, a))

C4 ∀m:M, ∀a:P (MRefPerson(m, a) →∃b,c:P (MFatherOf(m, b, a) ∧ MMotherOf(m, c, a))

5.2 Real-World Semantics Definition

The syntax we have defined in the previous section is silent with respect to the vari-

ous semantic issues for genealogy trees. For example, it does not define whether the

language represents biological or legal parenthood (or both), if an (unborn) fetus may

be represented in a model as a person, if a deceased person may be represented. These

issues are the object of the language’s real-world semantics, which we will define

here as a logic theory binding the reference ontology and the abstract syntax.

Considering that a DSL1 model aims to represent information about a set of admis-

sible world states according to the genealogy ontology, the predicate isAbout(m,w)

relates a model m in DSL1 to an admissible world according to the ontology. When a

model m represents information about a world w, the model elements may denote

elements that exist in the world states. Thus, to represent the relation between an in-

stance of a language construct and an instance of a real-world entity we define the

predicate refersTo(e,u) that holds if an instance of a syntactic element e ∈ P refers to

an instance of real-world entity u ∈ U. Table 3 shows the axioms that formalize the

definition of the predicate isAbout, thereby characterizing the real-world semantic

definition formally.
Table 3.Defining Real-World Semantics for DSL1

S1 ∀m:M, ∀w:W (isAbout(m, w) →

 ∀a:P (MMan(m, a) → ∃!x:U(Man(w, x) ∧ refersTo(a, x))))

S2 ∀m:M, ∀w:W (isAbout(m, w) →

 ∀a:P (MWoman(m, a) → ∃!x:U(Woman(w, x) ∧ refersTo(a, x))))

S3 ∀m:M, ∀w:W (isAbout(m, w) →

 ∀a,b:P(MFatherOf (m,a,b) →∃!x,y:U (FatherOf(x,y) ∧ refersTo(a,x) ∧ refersTo(b,y))))

S4 ∀m:M, ∀w:W (isAbout(m,w) →

 ∀a,b:P(MMotherOf (m,a,b) →∃!x,y:U (MotherOf(x,y) ∧ refersTo(a,x) ∧ refersTo(b,y))))

S5 ∀m:M, ∀w:W((

 ∀a:P (MMan(m,a) → ∃!x:U(Man(w,x) ∧ refersTo(a,x))) ∧
 ∀a:P (MWoman(m,a) → ∃!x:U(Woman(w,x) ∧ refersTo(a,x)))∧
 ∀a,b:P(MFatherOf (m,a,b) →∃!x,y:U (FatherOf(x,y) ∧ refersTo(a,x) ∧ refersTo(b,y))) ∧
 ∀a,b:P(MMotherOf (m,a,b) →∃!x,y:U (MotherOf(x,y) ∧ refersTo(a,x) ∧ refersTo(b,y))))

→ isAbout(m,w))

S1 relates the MMan construct to the ontology concept of Man, defining that if we

have a model m which aims to describe a portion of a world w and there is in such

model an instance a of the MMan construct then a must refer to a Man x which exists

in w. S2 is similar to S1 dealing with the relation between the MWoman construct and

the concept of Woman. S3 states that if, in a model m, there is a MFatherOf relation

between an instance a of MMan and an instance b of MPerson, then there must be, in

the world w, a FatherOf relation between the Man x referred by a and the Person y

referred by b. S4 places a similar statement on the relation between MMotherOf and

MotherOf. Thus, S1-S4 define necessary conditions to predicate that a model m in

DSL1 is about a world w.

S5 states that if all MMan constructs that exist in m refers to instances of Man that

exist in w, all MWoman constructs that exist in m refers to instances of Woman that

exist in w, all mFatherOf relations that exist in the m refers to instances of FatherOf

relations that exist in w, and all mMotherOf relations that exist in the m refers to in-

stances of MotherOfRelation that exist in w, then the model m isAbout the world w.

Thus, S5 defines the sufficient conditions to predicate that a model m in DSL1 is

about a world w.

6 Language Analysis

We have used Alloy to analyze some properties of DSL1. Alloy is a structural model-

ing language based on first-order logic [11]. A software framework named Alloy

Analyzer supports model simulation and consistency checking assuming the small

scope hypothesis in order to ensure tractability [11].

To enable the analysis, we have represented the three logic theories in three Alloy

modules. The module corresponding to the genealogy ontology was derived automati-

cally using the transformation from OntoUML to Alloy [12]. The module correspond-

ing the DSL1 metamodel (presented in Fig. 5) was derived following the systematic

patterns defined in [13]. In this way, we have ensured the correspondence between the

Alloy specifications and the models presented in Figures 4 and 5. The module repre-

senting the real-world semantics definition refers to the two previous modules, allow-

ing us to verify that the combined specification is consistent.

In order to automatically verify which of the syntactic constraints are semantically-

motivated, we have added the assumption that for every model m there is at least one

world w such that isAbout(m,w) holds, i.e. we have assumed that the language has a

well-defined real-world semantics. Then, we have verified each syntactic constraint as

an assertion. When no counter-example is found, the Alloy Analyzer guarantees that,

within a bounded scope, the assertion (in this case the tested syntactic constraint) is

entailed by the remainder of the specification (in this case the semantic axioms in

tandem with the ontology axioms). Thus, we can conclude the tested syntactic con-

straint is semantically-motivated.

Using this method, we have found that the syntactic constraint C3 (Table 2) is se-

mantically-motivated. In fact, C3 reflects, in DSL1 abstract syntax, the rule that ances-

try cycles are not allowed by the ontology. Note that, assuming that for every model

m there is at least one world w such that isAbout(m,w) holds, C3 is entailed by the

ontological axioms A1, A2, A4, A7, A8, A9 and A10 in tandem with the semantic

axioms S3 and S4. Thus, considering the abstract syntax in isolation, if C3 were miss-

ing there would be syntactically valid expressions of DSL1 with no semantics.

Applying the same method, we have concluded that the syntactic constraints C2

and C4 are not semantically-motivated. Indeed, they are concerned with representa-

tion characteristics of genealogy trees and are not necessitated by the ontology (C2

guarantees that a genealogy tree is all connected and C4 defines the father and the

mother of the mRefPerson must be represented). Consequently, the syntactic con-

structs mRefPerson and mRefAncestors, used in those constraints, are not mapped into

ontological concepts by the DSL1 real-world semantics definition. Another conse-

quence is that these two constraints can be omitted and/or altered without affecting

the DSL1 real-world semantics as long the resulting theory is still consistent. This

again can be checked automatically.

The minimum and maximum cardinality constraints of the mFatherOf and the

mMotherOf relations were also analyzed (both are defined with 0..1 multiplicity on

the metamodel). The analysis reveals that the maximum cardinality constraint is se-

mantically-motivated. This is because the maximum cardinality constraint reflects the

ontological rule that every Person has at most one father and one mother. The analy-

sis also reveals that the minimum cardinality constraint is not semantically-motivated.

This reflects a choice of the designer of DSL1 to allow models in which a person is

represented omitting her father and/or mother. The ontology, in turn, states that all

Persons must have exactly one father and one mother (with the exception of the

“original persons” which do not have parents).

This divergence between the ontological rules and syntactic constraints is a conse-

quence of the fact that the language allows incomplete models with respect to the

world states. In the genealogy case, it is reasonable to imagine that no one has infor-

mation about all his ancestors. On the other hand, the ontology ought to describe a

conceptualization of the reality and shall not be influenced by pragmatic issues, as the

need to foresee a lack of information. It is worth noticing that this difference on con-

straints does not lead to inconsistencies on the DSL1 semantics definition using the

referred domain ontology. According to the semantic axiom S1, every MMan in a

model must refer to a Man that exists in the worlds described by that model. So, if a

model in DSL1 presents an instance m of MMan with no mFatherOf association we

can infer that the Man referred to by m has a Father which is not represented in the

model or he is an “original” Person. No syntactic or semantic inconsistences arise.

7 Discussion

Our running example illustrates how the different purposes of reference domain on-

tology and language metamodel affect their definition. On the one hand, the domain

ontology accounts for the parenthood and ancestry relationships in terms of participa-

tions in Conception events. On the other hand, since the language only aims at repre-

senting the parenthood relationship (instead of aiming at grounding the concept of

parenthood), the DSL1 metamodel represents the concepts of MotherOf and FatherOf

as primitive syntactic constructs, not including constructs to represent Conception

events. In this example we can observe that, the real-world semantics definition ex-

plicitly settles that MotherOf and FatherOf represent the biological notions of

parenthood (as grounded on Conception events). This is of course a particular

worldview or conceptualization (or to be more precise, a particular ontological com-

mitment) which is reflected by the ontology.

Furthermore, considering that it is assumed here unnecessary to know if a person is

alive or not in the context of a genealogy tree specified in DSL1 and aiming to reduce

the language complexity (another example of pragmatic issue that may influence DSL

metamodels) the concepts of LivingPerson and DeceasedPerson have no counterpart

in the language metamodel. Thus, the approach of using a domain ontology to define

the language semantics allowed us to clearly specify the worldview underlying the

language without creating a counterpart construct for each real-world concept.

We should finally note that, when selecting a domain reference ontology to define

the semantics of a language one must carefully analyze the suitability of assuming the

underlying conceptualization as provider of the language real-world semantics. Ac-

cording to our ontology, a person exists as a result of the Conception event in which it

plays the role of Offspring. So, even a fetus is considered a person. Since we have

used this ontology as a basis to define DSL1’s real-world semantics, this has the con-

sequence that fetuses may appear in a genealogy tree. If this is considered undesirable

by language designers, a domain ontology that would provide a distinction between a

fetus and a person who is already born would be required. (This could possibly be a

refinement of the ontology used in this paper).

8 Related Work

Our investigation was initially motivated by the apparent confusion involving the

relation between ontologies and language metamodels in the literature. Some authors

(e.g. [14]) posit that the origin of this confusion may be the fact that both are often

depicted with the same or similar languages, such as variants of frame-based lan-

guages (of which UML in an example). There are many works in the literature (e.g.

[6], [15], [16]) that point to similarities and differences between these two concepts

and explore their relations. It is worth to note that various authors propose different

criteria to distinguish ontology from metamodel, which indicates that this is still an

open issue in the literature.

For example, Bezivin et al. [17] and Atkinson [18] suggest that the distinction be-

tween ontologies and model engineering artefacts (such as metamodels) is primarily a

matter of technical space. As we have shown here, ontologies and metamodels play

clear distinct roles in language engineering. Thus, while they can be harmonized into

the same overall framework eliminating accidental differences from technical spaces

(as we have done here with axiomatic logic theories) they serve different yet comple-

mentary purposes.

The integration of modeling languages is the focus of [16]. The authors argue that

most existing integration approaches are metamodel-based, and that they face some

difficulties because (domain) “concepts can be hidden in a metamodel”. Then the

authors propose a semi-automatic process to refactor metamodels into ontologies to

reveal those hidden concepts. The defined patterns are based on the fact that “in a

metamodel not necessarily all modeling concepts are represented as first-class citi-

zens”. While the presented patterns are shown to be useful, we argue that the semantic

issues are more complex than what can be addressed by metamodel refactoring, which

does not address explicitly choices concerning the semantics of language elements.

In [15] the authors discuss the use of ontologies, models and metamodels in model-

driven engineering (MDE). They present a proposal for the role of ontologies in meta-

pyramid of MDA. This proposal argues that role of ontologies is to describe the exist-

ing world and the domain of the system while the role of system models is to specify

and control the system under study. They allude to a relation between real-world ob-

jects and software objects at M0 (“is described by”). However, they position ontolo-

gies at M1 and do not elaborate on a possible relation between reference ontologies

and language metamodels (at M2). We believe this is an important gap in their ontol-

ogy-aware meta-pyramid for MDE, which we address in this paper.

The work of Ciocoiu and Nau [19] also consider the problem of providing seman-

tics for declarative languages based on ontologies. Similarly to our approach, they

show that information in language expressions may be incomplete or partial, and that

a mapping to a domain ontology will reveal assumptions that are implicit in language

expressions. Differently from our approach, they focus on language translation, and

not on implications for the language engineering effort.

Finally, we believe that the work described in this paper has implications beyond

language design and could also be applied to the area of database design. In particu-

lar, we believe that the so-called “semantic integrity constraints” in database systems

literature is analogous to what we have called semantically-motivated syntactic con-

straints. According to [20], the purpose of semantic integrity constraint in database

systems is “to avoid database states for which no correspondence can exist in the real

world”. While great importance has been given to the management of “semantic in-

tegrity constraints” in database systems, little attention has been devoted to the design

and validation of such constraints. It is said intuitively, in the literature, that they re-

flect the universe of discourse but no guidelines are given on how to discover the

necessary constraints or how to control their quality. Thus, the data modeler (not un-

like the language designer) must face semantic issues (e.g., the definition of “semantic

integrity constraints”) with little methodological support. We believe our work has

implications to the design of database systems, in that it could account for “semantic

integrity constraints” as semantically-motivated syntactic constraints. Given that we

could quantify over temporal aspects and histories (instead of world states only) the

approach can be extended to cover both the so-called static and dynamic constraints.

9 Conclusions and Future Work

In this paper we have discussed a principled approach to define the real-world seman-

tics for declarative domain-specific languages in terms of a reference domain ontolo-

gy. We illustrated our approach with a running example, describing a domain ontolo-

gy and using it to define the real-world semantics of a DSL. It allowed us to show

clear examples of how reference ontologies and language metamodels differ.

We have argued for a strict separation of concerns distinguishing the role of refer-

ence ontologies and language metamodels, separating syntactic and semantic con-

cerns and then linking them explicitly and precisely. A clear separation of concerns

allows us to apply suitable modeling disciplines to each of the tasks at hand: under-

standing and capturing a domain conceptualization (a concern of ontology engineer-

ing) and dealing with abstract syntax design (a concern of language engineering).

Our approach is grounded on the fact that the relation between a language and real-

ity is always mediated by a certain conceptualization [21]. If nothing is said about the

conceptualization underlying a language, each language user may interpret a model

based on his/her own concepts about reality. Thus, the formal definition of a language

real-world semantics is essential to empower language’s users to efficiently com-

municate about reality.

Besides its importance to avoid misunderstandings in a communication process,

the explicit real-world semantics representation may bring some additional benefits to

language’s designers and users: (i) the real-world rules formalized by the ontology

inform language design (e.g. guiding the definition of constructs and syntactic con-

straints); (ii) the explicit real-world semantic definition allows systematic evaluation

of truthfulness of a language with respect to a specific domain conceptualization; (iii)

reasoning may be used to infer some information not represented (explicitly) in the

models using the semantic mapping and the ontological axioms.

Moreover, by formally characterizing the syntactic constraints, ontology axioms

and semantic definition, our approach forms a basis for DSL design automation. Lev-

eraging the existing transformations from OntoUML to Alloy, we have shown that it

is possible to automatically verify which of the syntactic constraints are semantically-

motivated. Without these constraints the language would produce models with no

meaning. We believe the formal approach discussed here can be used to support more

advanced evaluation of DSL semantics, systematizing the application of the ontologi-

cal analysis approach discussed in [6]. We also intend to use the presented approach

to enable the semantic interoperation of languages in multi-viewpoint modeling. An-

other challenge is to define a step-by-step ontology-driven DSL design approach.

These are topics for further investigation.

Finally, the availability of a reference domain ontology greatly simplifies the task

of the language designer. However, we should emphasize that our approach does not

presuppose the development of a specific reference ontology with the sole purpose of

supporting the design of a particular language. Ideally, the effort invested in the de-

sign of a reference ontology should be compensated by its reuse in a number of appli-

cations, e.g., the design of several languages, (semantic) language interoperability,

database construction and integration, etc. A number of challenges concerning meth-

odological implications of our approach remain open for further investigation, includ-

ing guidelines for choosing a reference domain ontology suitable to define the real-

world semantics of a DSL and guidelines for developing reusable ontologies.

Acknowledgments. This research is funded by the Brazilian Research Funding

Agencies CAPES and CNPq (grants number 310634/2011-3, 311578/2011-0 and

485368/2013-7).

References

1. Olivé, A.: Conceptual Modeling of Information Systems. Springer(2007)

2. Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand (1997)

3. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.(Eds.), Syntax and Semantics,

Vol 3, pp. 43-58. Academic Press, New York (1975)

4. Davis, R., Shrobe, H., Szolovits, P.: What is a knowledge representation?. AI Magazine,

Spring (1993)

5. Sheth, A.P., Kashyap, V.: So far (schematically) yet so near (semantically). In: Proc. of the

IFIP WG 2.6 Database Semantics Conference on Interoperable Database Systems (1992)

6. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta)

models. In: Vasilecas, O., Eder, J.,Caplinskas, A. (Eds.), Databases and Information Sys-

tems IV, pp. 18–39,. IOS Press, Amsterdam(2007)

7. Lowe, E.J.: Ontology. In: Honderich, T. (Ed.), The Oxford companion to philosophy, p. 670.

Oxford University Press (2005)

8. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of

Twente, Enschede, The Netherlands (2005)

9. Guarino, N.: Formal ontology and information systems. In: Proceedings of International

Conference on Formal Ontology in Information Systems(FOIS), pp. 3-15, IOS Press (1998)

10. Hayes, P.: The Naïve Physics Manifesto. In: Ritchie, D. (Ed.), Expert Systems in Microe-

letronics age, pp 242-270. Edinburgh University Press (1978)

11. Jackson, D.: Software Abstractions: Logic, Language and Analysis. The MIT Press, (2006)

12. Benevides, A. B., Guizzardi, G., Braga, B. F. B., Almeida, J. P. A.: Validating Modal As-

pects of OntoUML Conceptual Models Using Automatically Generated Visual World Struc-

tures. In: Journal of Universal Computer Science, 16, p. 2904-2933 (2011)

13. Anastasakis, K., Bordbar, B., Georg, G, Ray, I.: On Challenges of Model Transformation

from UML to Alloy. Software & Systems Modeling, vol. 9, pp. 69-86. Springer (2010)

14. Ruiz, F., Hilera, J.R.: Using ontologies in software engineering and technology. In:

Calero,C., Ruiz F.,Piattini, M. (Eds.), Ontologies for Software Engineering and Software

Technology, 49-102. Springer-Verlag, Berlin (2006)

15. Aßmann, U., Zschaler, S., Wagner, G.: Ontologies, meta-models, and the model-driven par-

adigm. In: Calero,C., Ruiz F.,Piattini, M. (Eds.), Ontologies for Software Engineering and

Software Technology, 249-273. Springer-Verlag, Berlin (2006)

16. Kappel, G., et al.: Lifting metamodels to ontologies – a step to the semantic integration of

modeling languages. In: Proc. ACM/IEEE 9th Int’l Conf. on Model Driven Engineering

Languages and Systems (MODELS’06), 528-542. Springer-Verlag, Berlin (2006)

17. Bézivin J., et. al.: An M3-neutral infrastructure for bridging model engineering and ontology

engineering. In: Proc. of the First International Conference on Interoperability of Enterprise

Software and Applications, p. 159-171. Springer (2005)

18. Atkinson C.: On the unification of MDA and web-based knowledge representation technol-

ogies. In: 1st International Workshop on the Model-Driven Semantic Web (2004)
19. Ciocoiu, M., Nau, D.: Ontology-Based Semantics. In: Proceedings of the Seventh Interna-

tional Conference on Principles of Knowledge Representation and Reasoning, (2000)

20. Türker, C.: Semantic Integrity Constraints in Federated Database Schemata. Dissertations in

Database and Information Systems, Vol. 63. Infix-Verlag, Sankt Augustin (1999)

21. Baldinger, K: Semantic Theory: Towards a Modern Semantics. Palgrave Macmillan (1980)

