
SABiO: Systematic Approach for Building Ontologies

Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO),

Federal University of Espírito Santo, Vitória, Brazil

falbo@inf.ufes.br

Abstract. This paper presents the new version of SABiO - a Systematic Ap-

proach for Building Ontologies. SABiO focus on the development of domain

ontologies, and also propose support processes. SABiO distinguishes between

reference and operational ontologies, providing activities that apply to the de-

velopment of both types of domain ontologies.

Keywords: ontology engineering, domain ontology, ontology development

1 Introduction

Nowadays, the Ontology Engineering community recognizes the great help Software

Engineering can provide for improving practices in the ontology engineering process.

Like any complex software development activity, building quality ontologies requires

appropriated methods and tools. In 1997, we defined SABiO, a Systematic Approach

for Building Ontologies, whose first version was published in [1]. Since then, SABiO

has been used for building several domain ontologies, such as ontologies for the soft-

ware process domain [2], and cardiology domain [3]. In [4], we discussed strong

points and weakness of the method, presenting some lessons learned and improve-

ment opportunities to evolve it. Minor changes, such as using a UML profile as mod-

eling language, were done in SABiO at that time.

SABiO was originally conceived for supporting the development of domain refer-

ence ontologies. By domain reference ontology we mean a domain ontology that is

built with the goal of making the best possible description of the domain. It is a solu-

tion-independent specification (conceptual model) with the aim of making a clear and

precise description of domain entities for the purposes of communication, learning

and problem-solving. Once users have already agreed on a common conceptualiza-

tion, operational versions (machine-readable ontologies) of a reference ontology can

be implemented. Contrary to reference ontologies, operational ontologies are designed

with the focus on guaranteeing desirable computational properties [5].

As pointed by several works, such as [5, 6], ideally domain ontologies should be

developed grounded in foundational (top-level) ontologies. Concepts and relations in

a domain ontology must be previously analyzed in the light of a foundational ontolo-

gy. The idea behind ontological analysis is to provide a sound foundation for model-

ing concepts, if assumed that such concepts are aimed at representing reality [7].

mailto:gguizzardi%7D@inf.ufes.br

Among the benefits of ontological analysis, we can cite [8, 9]: (i) the rigorous defini-

tion of models, in terms of real-world semantics; (ii) the identification of problems in

the definition, interpretation or usage of concepts; and (iii) recommendations for

model formality improvements. We ourselves experienced these benefits when onto-

logically analyzing the software process ontology [2], when several problems in the

ontology were detected and the entire ontology re-engineered [10].

 In order to incorporate these experiences, and the important distinction between

reference and operational ontologies, we evolved SABiO. Moreover, we take the

opportunity for incorporating to SABiO best practices commonly adopted in Software

Engineering and Ontology Engineering. The main differences between versions 1.0

and 2.0 of SABiO are: (i) SABiO 2.0 extends the original development process to

consider the design, implementation and test of operational ontologies; (ii) SABiO 2.0

considers new support processes for knowledge acquisition, reuse, and configuration

management; (iii) SABiO 2.0 recognizes the importance of the use of foundational

ontologies in the development of domain ontologies, and proposes applying ontologi-

cal analysis during ontology capture; (v) Regarding ontology evaluation, SABiO 2.0

addresses both ontology verification and validation.

This paper presents the new version of SABiO, and it is organized as follows. In

Section 2, we present an overview of SABiO 2.0. Section 3 presents SABiO's devel-

opment process, describing each one of its activities, as well as the roles involved in

their accomplishment, artifacts required and produced, and some techniques and

guidelines for performing them. Section 4 presents SABiO's support processes. Sec-

tion 5 discusses related works. Finally, Section 6 presents our final considerations.

2 An Overview of SABiO

Figure 1 presents an overview of SABiO 2.0. As this figure shows, SABiO develop-

ment process comprises five main phases: (i) Purpose identification and requirements

elicitation; (ii) ontology capture and formalization; (iii) design; (iv) implementation;

and (v) test. Support processes are performed in parallel to the development process.

Although Figure 1 suggests a somewhat sequential workflow, SABiO does not pre-

scribe any specific life cycle model. Thus, life cycle models such as Incremental and

Spiral can be adopted. We recommend incremental and iterative development.

SABiO focuses on the development of domain ontologies. Two types of domain

ontologies can be developed: reference and operational ontologies. As aforemen-

tioned, a reference ontology is a special kind of conceptual model. An operational

ontology, in turn, is a machine-readable implementation version of the ontology, de-

signed with the focus on guaranteeing some desirable computational properties [5].

Thus, before implementing an operational ontology, a design phase should be accom-

plished taking technological non-functional requirements and the ontology implemen-

tation environment into account. If someone is interested in building a reference on-

tology, then she shall accomplish only the first three activities of the development

process. If someone wants to build an operational ontology, then she has to perform

the entire development process.

D
o

cu
m

en
tatio

n

C
o

n
figu

ratio
n

M
an

agem
en

t

Evalu
atio

n

R
eu

se
Purpose Identification

and Requirements
Elicitation

Reference Ontology

Design

Implementation

Operational Ontology

Testing

Development Process Support Processes

K
n

o
w

led
ge

A
cq

u
isitio

n

Ontology Capture
and Formalization

Fig. 1. SABiO's Processes

3 SABiO's Development Process

SABiO development process comprises five main phases. Each phase is composed of

activities, which are to be performed by workers playing certain roles. The main roles

considered in SABiO are: (i) domain expert, who is a specialist in the ontology do-

main, and provides the knowledge that is to be modeled and implemented in the do-

main ontology; (ii) ontology user, representing someone who intends to use the ontol-

ogy for a given purpose; (iii) ontology engineer, who is responsible for the reference

ontology, and thus is responsible for the initial phases of the ontology development

process; (iv) ontology designer, who is responsible for the design of an operational

ontology; (v) ontology programmer, who is responsible for implementing an opera-

tional ontology; (vi) ontology tester, who is responsible for testing an operational

ontology. It is worthwhile to point out that a given worker can play several roles in a

given project. For instance, generally the roles of ontology designer and ontology

programmer are played by the same worker, since both roles require great knowledge

regarding the ontology implementation environment.

Ontology Purpose Identification and Requirements Elicitation

The first phase in SABiO's development process is Purpose Identification and Re-

quirements Elicitation. As Figure 2 shows, this phase comprises four activities that

occur in an iterative way, all of them involving the participation of the ontology engi-

neer, domain experts and potential ontology users.

Purpose Identification
and Requirements

Elicitation

Ontology User

Ontology Engineer

Domain Expert

Purpose, Requirements, Competency
Questions, Sub-ontologies

Purpose and
Intended Uses
Identification

Requirements
Elicitation

Competency
Questions

Identification

Ontology
Modularization

Fig. 2. The Purpose Identification and Requirements Elicitation Phase.

Initially, we need to identify the ontology purpose and its intended uses. Once de-

fined the ontology purpose and intended uses, we should elicit its requirements. On-

tology requirements, like software requirements, can be divided into functional and

non-functional requirements. Functional requirements refer to the knowledge (con-

tent) to be represented by the ontology, and can be stated as competency questions,

i.e. the questions that the ontology should be able to answer [11]. By establishing the

competency questions, we reach an effective way to determine what is relevant to the

ontology and what is not, i.e. we define its scope. Moreover, we provide a way for its

evaluation. On the other hand, non-functional requirements refer to the characteristics,

qualities and general aspects not related to the ontology content [12]. Non-functional

requirements can be divided into: (i) ontology quality attributes, which refer to char-

acteristics that the ontology, as a software product, should present, such as reasoning

performance and availability (for the case of operational ontologies), usability (e.g.,

understandability), maintainability (e.g., extensibility); (ii) project requirements,

which are requirements derived from the ontology project, such as process require-

ments (e.g., adherence to process models and document templates), implementation

requirements (e.g., whether the operational ontology must be implemented in a given

machine-readable language), delivery requirements (e.g., time to market), consensus-

related requirements (e.g., who must agree with the ontology); (iii) intended uses-

related requirements, which take the intended uses for the ontology into account, such

as knowledge sources-related requirements (e.g., whether the terminology to be used

in the ontology must be taken from standards), interoperability requirements (e.g.,

whether the ontology must be grounded in a specific foundational ontology in order to

easy its integration with other ontologies already existing).

Functional requirements should be written in the form of competency questions

(CQs). CQs can be identified using different strategies, and written in different granu-

larity levels. Some strategies for identifying CQs are [12]: (i) Top-down: the ontology

engineer starts with complex questions that are decomposed in simpler ones; (ii) Bot-

tom-up: the ontology engineer starts with simple questions that are composed to cre-

ate complex ones; (iii) Middle out: the ontology engineer starts just writing down

important questions that are composed or decomposed later on to form abstract and

simple questions, respectively. Whatever strategy used, in the end, we need to achieve

a set of CQs in both levels. Simple CQs are important for deriving test cases; complex

and more abstract CQs are important to guide ontology modularization.

If the domain of interest is complex, we need to modularize the ontology. Ontology

modularization consists in identifying modules (or sub-ontologies) that can be consid-

ered separately while they are interlinked with other modules [12]. The benefits of

modularizing ontologies include [12]: (i) to facilitate the development and mainte-

nance of the ontology by dividing it in loosely coupled, self-contained modules; (ii) to

facilitate the reuse of parts of the ontology; (iii) to improve performance by enabling

distributed processing. However, there is no universal way to modularize an ontology

and the choice of a particular approach should be guided by the ontology require-

ments [12]. SABiO suggests decomposing the ontology into sub-ontologies. Tech-

niques and criteria for ontology partitioning, such as the ones proposed in [13], apply.

Regarding the criteria, we suggest considering at least the following ones: independ-

ence, cohesion, and size. UML package diagrams should be developed for graphically

showing the sub-ontologies and the dependencies between them. If a sub-ontology

so2 refers to a concept defined in another sub-ontology so1, then so2 depends on so1.

The four rules for partitioning ontologies proposed in [12] are also useful here.

The four activities in Figure 2 must be performed in an iterative way. Based on the

purpose initially established for the ontology and the intended uses elicited with po-

tential users of the ontology, requirements are elicited and competency questions are

outlined. The ontology engineer may then identify sub-ontologies and allocate the

competency questions to the sub-ontologies identified. The growing understanding of

the domain can lead to a better understanding of the purpose of the ontology and the

identification of new intended uses, starting a new cycle.

Ontology Capture and Formalization

The main goal of this phase is to capture the domain conceptualization based on

the competency questions. As discussed in the Introduction of this paper, SABiO

suggests that concepts and relations in a reference domain ontology are analyzed in

the light of a foundational ontology. Ontological analysis can be applied in several

scenarios: portions of the ontology that are developed from scratch should be ana-

lyzed, as well as non-ontological and ontological resources to be reused. A founda-

tional ontology must be selected for performing this task.

The relevant concepts and relations should be identified and organized. A graphical

model is a key instrument for supporting communication, meaning negotiation and

consensus establishment with domain experts. For building reference domain ontolo-

gies, highly-expressive languages should be used to create strongly axiomatized on-

tologies that approximate as well as possible to the ideal ontology of the domain. The

focus on these languages should be on representation adequacy, since the resulting

specifications are intended to be used by humans [5]. An example of an ontology

representation language that is suitable for reference ontologies is OntoUML, a UML

class diagram profile that incorporates important foundational distinctions made by

the Unified Foundational Ontology (UFO) [14].

As Figure 3 shows, this phase begins with a conceptual modeling activity. During

conceptual modeling, initially the ontology engineer should identify the main con-

cepts and relations in the domain. Concepts should be properly organized in taxono-

mies. Since SABiO suggests the use of OntoUML, the ontology engineer should clas-

sify each concept according to the types defined in OntoUML (kind, subkind, phase,

role, category, rolemixin etc.). Moreover, OntoUML constraints for relating these

types should be respected. Ontological patterns and modeling rules inherent to

OntoUML, such as the ones for modeling subkinds, phases, roles [15] and rolemixins

[14], should be applied in order to achieve consistent conceptual models.

Ontology Capture and
Formalization

Reference Ontology

Conceptual
Modeling

Dictionary of
Terms

Definition

Informal
Axioms

Definition

Formal Axioms
Definition

Purpose, Requirements, Competency
Questions, Sub-ontologies

Domain Expert

Ontology Engineer

Fig. 3. The Ontology Capture and Formalization Phase.

Ontology capture is strongly supported by the knowledge acquisition process.

Knowledge can be elicited from domain experts, as well as from sources of consoli-

dated knowledge, such as books, international standards, and reference models. Con-

cepts, relations and properties reused from non-ontological resources should be onto-

logically analyzed in the light of the selected foundational ontology; fragments of

reused ontologies that are not grounded in the same foundational ontology too.

Concepts and relations are the basis of an ontology, but they can be not enough to

capture the domain conceptualization. Constraints must also be taken into account.

Thus, axioms specifying constraints and inferences should be specified. Initially, we

do not need to write down formal axioms, rather the axioms should be written in natu-

ral language, simply reflecting inferences and constraints on the universe of discourse.

Ontology capture should be guided by the competency questions. The ontology el-

ements (concepts, relations, properties and axioms) in the ontology must be necessary

and sufficient to answer the competency questions. If the ontology elements are not

enough for this purpose, then additional concepts, relations, properties or axioms must

be added. In this sense, the ontology capture is an iterative process, strongly linked

with the evaluation process.

During formalization, the informal axioms should be written in a formal language.

In this language, in contrast to the natural language, we have signs that are unambigu-

ous and formulations that are exact and, therefore, clarity and correctness can be more

easily evaluated. On the other hand, formal axioms are not able to substitute their

descriptions in natural language; rather, they are to be used to support these descrip-

tions. In fact, each representation plays a specific role.

It is worthwhile to point out that in SABiO, formalization regards solely to writing

formal axioms from the informal ones. Thus, formalization should not be confused

with ontology implementation, when the entire ontology is codified in a machine-

readable language. In order to allow describing complex constraints and inference

rules, highly-expressive languages, such as such as first order logics and OCL, should

be used.

Finally, many times, during the ontology capture and formalization phase, new

competency questions for the ontology arise. Thus, iteration with the previous phase

(Purpose Identification and Requirements Elicitation) is very common.

Ontology Design

Once a reference ontology is produced, many times we want to get an operational

version to be used by computer applications. In order to achieve this operational ver-

sion, we need to design and implement it in a particular machine-readable ontology

language (e.g. OWL). In the design phase, the conceptual specification of the refer-

ence ontology should be transformed into a design specification by taking into ac-

count a number of issues ranging from architectural issues and technological non-

functional requirements, to target a particular implementation environment. The same

reference ontology can be used to produce a number of different designs [5].

Figure 4 shows the activities that comprise the ontology design phase. First, the on-

tology engineer must work together with the ontology designer to complement the list

of technological non-functional requirements for the operational ontology, and to

define the environment on which it will be implemented. Differently from reference

ontologies, operational ontologies are not focused on representation adequacy, but are

designed with the focus on guaranteeing desirable computational properties. The de-

sign phase, thus, aims at bridging the gap between the conceptual modeling of refer-

ence ontologies and the coding of them in terms of an operational ontology language

[5]. Issues that should be addressed in the design phase include: determining how to

deal with the differences in expressivity of the languages that are used in each of these

phases, and how to produce lightweight specifications that maximize specific techno-

logical non-functional requirements, such as reasoning performance.

Technical Non-Functional
Requirements Elicitation

Implementation
Environment Definition

Architectural Design

Detailed Design

Reference Ontology

Ontology Design
Specification

Design

Ontology Engineer

Ontology Designer

Fig. 4. The Ontology Capture and Formalization Phase.

Once defined the implementation environment, the ontology designer must revisit

the ontology modularization defined in the beginning of the project. Now, she has to

take the technological non-functional requirements and the characteristics of the im-

plementation environment into account to define the ontology architecture.

Finally, during detailed design, the ontology designer has to address the problems

related to the lower expressivity of the operational languages when compared to the

models expressed in OntoUML and the formal axioms (outputs of the ontology cap-

ture and formalization phase). Generally, heavyweight ontologies must give rise to

lightweight ones. If the implementation environment includes OWL and SWRL, the

transformation from OntoUML to these languages proposed in [16] can be applied. In

this case, we recommend using the Ontology Lightweight Editor (OLED) [16].

Ontology Implementation

The implementation phase regards implementing the ontology in the chosen opera-

tional language.

Ontology Testing

In SABiO, ontology test refers to dynamic verification and validation of the behav-

ior of the operational ontology on a finite set of test cases, against the expected behav-

ior regarding the competency questions. In this sense, SABiO's testing phase is com-

petency questions-driven, and considers mainly black-box testing, although white-box

testing can also be applied. A test case comprises an implementation of a competency

question as a query in the chosen implementation environment (the specification to be

tested), plus instantiation data from the fragment of the ontology being tested (input),

and the expected result based on the considered instantiation (expected output). As

Figure 5 shows, ontology testing in SABiO comprises three main activities.

Ontology Testing

Test Cases, Test Results

Sub-ontology
Testing

Integration
Testing

Ontology
Testing

Operational
Ontology

Reference Ontology Ontology Design
Specification

Ontology User

Ontology Tester

Fig. 5. The Ontology Test Phase.

Initially, test cases are run in the context of a sub-ontology. As sub-ontologies are

integrated, ontology integration testing is performed. In this activity, the same test

cases are re-run, but now considering the sub-ontologies already integrated. Finally,

ontology testing is performed. In this activity, the test cases are run again in the con-

text of the full ontology. During ontology testing, new test cases can be defined for

testing technological non-functional requirements. Thus, ontology testing may in-

clude, among others, recovery and stress testing for web ontologies, and performance

testing for checking inference performance. Validation testing can also be performed

by using the operational ontology in actual software applications, according to the

intended uses originally proposed to the ontology. Validation testing should be per-

formed by ontology users.

4 SABiO's Support Processes

As shown in Figure 1, SABiO considers five main support processes: knowledge

acquisition, documentation, configuration management, evaluation and reuse. These

processes span the whole development process (or considerable parts of it).

Knowledge Acquisition Process

Knowledge acquisition occurs mainly in the initial phases of the ontology devel-

opment process. Conventional methods and techniques for knowledge acquisition and

for requirements elicitation applies, mainly those devoted to collaborative knowledge

acquisition, such as brainstorming.

Domain experts are the main source for knowledge acquisition. Without the in-

volvement of them, the ontology project can be impaired. Other important sources of

knowledge are consolidated bibliographic material, such as classical books, interna-

tional standards, glossaries, lexicons, classification schemes, and reference models.

The methodological guidelines for reusing non-ontological resources described in

[12] can be applied for selecting the most suitable resources to be used. The use of the

knowledge elicited from these sources necessarily involves reengineering. In this

context, ontological analysis based on a foundational ontology, as previously dis-

cussed, is an important technique to be applied. For an example of such case, see [17].

Reuse Process

Along the development process, there are many opportunities for reusing concep-

tualizations already established for the domain in hands. Typically there are for main

sources for reuse: existing domain ontologies, core ontologies, foundational ontolo-

gies, and ontology patterns.

Existing ontologies for the domain can be reused, totally or partially. Especially in

the case of partially reusing existing domain ontology, techniques of ontology merge,

mapping and eventually reengineering apply [12]. Reuse of core ontologies (ontolo-

gies that provide a precise definition of structural knowledge in a specific field that

spans across different application domains in this field [18]) are made mainly by

means of specialization. Concepts and relations of the core ontology are extended by

means of subtype relations in order to capture the more specific conceptualization

regarding the domain in hands. New concepts, relations, properties and axioms can

then be introduced in the domain ontology. Foundational ontologies can also be re-

used. In this case, reuse can be done by means of specializations (as in the case of

core ontologies), but also by analogy. In reuse by analogy, foundational concepts and

relations are not explicitly extended in the domain ontology, but implicitly used for

deriving the structure of a portion of the domain ontology. In this sense, reuse by

analogy is strongly related to the structuring of the concepts and relations in a domain

ontology. A third way of reusing foundational ontologies is by using its foundations

to analyze fragments of the domain ontology (ontological analysis). The use of

OntoUML as modeling language for developing reference domain ontologies, and

OntoClean [19] are examples of ways of performing ontological analysis.

Reuse can also be achieved by means of ontology patterns (OPs). In [20], Falbo et

al. propose an OP classification that is closely related to patterns in Software Engi-

neering, including four main types of OPs: conceptual OPs, architectural OPs, design

OPs, and programming OPs (idioms). Ontology Conceptual Patterns are fragments of

either foundational ontologies (Foundational OPs) or domain reference ontologies

(Domain-related OPs). Foundational OPs are reusable fragments of foundational on-

tologies, while Domain-related OPs are reusable fragments extracted from reference

domain ontologies. These patterns are to be used during the ontology conceptual

modeling activity. Ontology Architectural Patterns are patterns that describe how to

arrange an ontology (generally a large one) in terms of sub-ontologies or ontology

modules, as well as patterns that deal with the modular architecture of an ontology

network. These patterns can be used both during the purpose identification and re-

quirements elicitation phase (ontology modularization activity), and in the ontology

design phase (ontology architectural design activity). Since modularity is recognized

as an important quality characteristic of good ontologies, we advocate for their use

since the first stages of ontology development, for splitting the ontology into smaller

parts, allowing tackling the problems one at a time. When applied in the architectural

design activity, the purpose is to reorganize the ontology modules for addressing

technological aspects, in special by taking non-functional requirements into account.

Ontology Design Patterns (ODPs) are to be used during the ontology detailed design

activity. There are two main types of ODPs [20]: logical and reasoning ODPs. Rea-

soning ODPs addresses specific design problems related to improving reasoning with

ontologies (and qualities related to reasoning, such as computational tractability, de-

cidability and reasoning performance). Logical ODPs, in turn, regards problems relat-

ed to the expressivity of the formalism to be used in ontology implementation. They

help to solve design problems that appear when the primitives of the implementation

language do not directly support certain logical constructs. Logical ODPs are ex-

tremely important for ontology design, since most languages for coding operational

ontologies are not focused on representation adequacy. We should highlight that

many patterns that address reasoning and logical problems are, in fact, Ontology Idi-

oms (or Ontology Programming Patterns), since they describe how to solve problems

related to reasoning or to the expressivity of a specific language (e.g., OWL). Ontolo-

gy idioms can be reused both during ontology detail design and ontology implementa-

tion activities [20]. Finally, during ontology test, test cases can be reused.

Documentation Process

Results from the ontology development process must be documented. Moreover,

results from some support processes, such as evaluation, must also be documented.

So, documentation is a process that has to occur in parallel with the others.

In order to ensure uniformity in the ontology projects, it is useful to define the

basic set of documents to be produced in all projects. Templates for the main docu-

ments must also be defined. SABiO suggests three main documents to be produced as

the documentation of an ontology project. As a result of the first two phases of the

development process, a Reference Ontology Specification should be produced. The

Operational Ontology Design Specification documents the aspects related to the de-

sign phase, including: information related to the implementation environment, tech-

nical non-functional requirements, ontology architecture, and main design decisions.

For documenting the operational ontology (i.e., the source code implementing the

ontology), SABiO suggests that the organization defines naming conventions and

rules for commenting the ontology code. Finally, for documenting the ontology test

phase, a test document shall be produced, including test cases and test results.

Due to the highly collaborative nature of ontology projects, we suggest the use of

wikis for documentation, especially for documenting reference ontologies.

Configuration Management Process

The main documents proposed by SABiO, as well as the source code of the opera-

tional ontologies must have their configuration managed. Thus, once approved, they

must be submitted to the Configuration Management, where they will be controlled at

least concerning changes, versions, and delivery.

Evaluation Process

Although shown as an activity of the ontology development process, ontology test-

ing is, in fact, an evaluation activity. Ontology testing consists of the dynamic evalua-

tion (i.e. running code) of the behavior of an operational ontology on a finite set of

test cases, against the expected behavior. On the other hand, several other static eval-

uation activities (those not involving running the code) must be performed during the

ontology development process. Those activities are performed by means of technical

reviews. In the context of ontology engineering, the purpose of a technical review is

to evaluate an intermediary work product of the ontology development process to

determine its suitability for its intended use. The results should confirm (or not) that

the work product meets the specifications, and adheres to standards.

SABiO's evaluation process comprises two main perspectives:

 Ontology Verification: aims to ensure that the ontology is being built correct-

ly, in the sense that the output artifacts of an activity meet the specifications

imposed on them in previous activities.

 Ontology Validation: aims to ensure that the right ontology is being built,

that is, the ontology fulfills its specific intended purpose.

Concerning ontology verification, the focus is on two main aspects: (i) Are the on-

tology quality criteria (competency, clarity, coherence, consistency, minimal ontolog-

ical commitment, etc.) being met? (ii) Are the established standards (e.g., document

templates) and processes being correctly applied? Regarding the quality criteria, one

stands out: competency. As aforementioned, SABiO ontology testing phase is driven

by the competency questions. However, this is not enough. During the ontology cap-

ture and formalization phase, the reference ontology should also be verified whether it

meets the requirements. This can be done by means of expert judgment. A table indi-

cating which ontology elements (concepts, relations, and axioms) are able to answer

each competency question should be built. The purpose of this table goes further veri-

fication. It can also be used as a traceability tool, supporting change management.

Concerning ontology validation, the participation of domain experts and ontology

users is essential. Ontology users have to evaluate whether the ontology is adequate

for their intended uses. For validating the reference ontology with domain experts, the

use of a graphical notation is very important, since generally they are not able to read

formal specifications. Besides expert judgment, another relatively easy way to vali-

date a reference ontology is by means of instantiation. The reference ontology should

be able to represent real world situations. Thus, an instantiation table should be pro-

duced from real world situations.

There are many evaluation techniques proposed in the literature. Several of them

can also be applied in a complementary way to the ones mentioned above. See a good

list of them in [12, 21].

5 Related Work

There are many ontology methods proposed in the literature. However, as pointed by

Corcho et al. [22], none of the existing approaches is fully mature if compared to

software engineering methodologies. Although we clearly have advanced in the last

years, as shown by the findings of the survey performed by Simperl et al. in 2009

[23], there are still room for improvements, and Software Engineering plays an im-

portant role in this scenario.

Among the various existing methods, we selected the NeOn Methodology for On-

tology Engineering [12] to compare to SABiO, since it is the result of the largest pro-

ject devoted to Ontology Engineering already performed, involving 14 partners and

during 4 years. The NeOn Methodology focuses on the engineering of ontology net-

works, and does not prescribe a rigid workflow, but instead it suggests a variety of

pathways for developing ontologies. Like SABiO, the NeOn Methodology includes

several processes strongly linked to the development process, organized in 9 scenari-

os. Some processes, namely Ontology Development, Evaluation (Verification and

Validation), Reuse, Documentation, Configuration Management and Knowledge Ac-

quisition, are common to both methods. The NeOn Methodology considers also other

aspects not explicitly consider in SABiO, such as Ontology Localization, Manage-

ment, Alignment, and Consensus Reaching Process. In this sense, SABiO can be en-

riched by applying several ideas from the NeOn Methodology. Aspects related to

collaborative development, addressed by methods such as DILIGENT [24], are not

adequately addressed in SABiO, and thus practices proposed by this (and other more

collaborative) methods should be introduced in SABiO.

The striking features of SABiO when compared to the NeOn Methodology (and al-

so other ontology engineering methods) are: (i) The recognition that both reference

domain ontologies and operational ontologies are useful in themselves. SABiO sup-

ports the development of both types of domain ontologies. This distinction leads to

the perception of the importance of a design phase (as largely recognized in Software

Engineering) in the ontology development process. Moreover, pattern-oriented reuse

in SABiO is also guided by this distinction. Other ontology engineering methods do

not prescribe a design phase in the sense used in Software Engineering. (ii) SABiO

recognizes the importance of the use of foundational ontologies in the development of

domain ontologies, and proposes the use of OntoUML during ontology capture, as

well as ontological analysis techniques. These two main features of SABiO have im-

pact in activities of other processes. For instance, Knowledge Acquisition and Reuse

Processes are strongly influenced by them. Thus, there are differences in the ap-

proaches proposed by SABiO and the NeOn Methodology regarding these processes.

6 Final Considerations

This paper presented the new version of SABiO, an ontology engineering method.

This version was firstly used for developing ROoST (Reference Ontology on Soft-

ware Testing) [25], and an operational ontology derived from it. In this project, in

general, SABiO 2.0 worked well, especially the reuse process, by the reuse of do-

main-related patterns organized as an ontology pattern language. It is important to

highlight also the great support provided by the Ontology Lightweight Editor (OLED)

[16] for automatically generating an OWL ontology (operational ontology) from the

OntoUML models.

We know that we need more feedback in order to improve the current practices of

SABiO. Since SABiO is now being applied in the development of other domain on-

tologies, we intend to collect new feedback from these projects, in order to better

evaluate the current version of the method.

Acknowledgments. This research is funded by the Brazilian Research Funding

Agency CNPq (Process Number 485368/2013-7).

References

1. Falbo, R.A., Menezes, C.S., Rocha, A.R.C. A Systematic Approach for Building Ontolo-

gies. Proceedings of the 6th Ibero-American Conference on Artificial Intelligence, Lisbon,

Portugal, Lecture Notes in Computer Science, vol. 1484, 1998.

2. Falbo, R.A., Bertollo, G., A software process ontology as a common vocabulary about

software processes. International Journal of Business Process Integration and Management

(IJBPIM), v. 4, p. 239-250, 2009.

3. Oliveira, K.M., Zlot, F., Rocha, A.R., Travassos, G.H., Galotta, C., Menezes, C.S., Do-

main-oriented software development environment, Journal of Systems and Software, v. 72,

issue 2, pp. 145-161, July 2004.

4. Falbo, R. A., Experiences in Using a Method for Building Domain Ontologies, Interna-

tional Workshop on Ontology in Action, Proceedings of the 16th International Conference

on Software Engineering and Knowledge Engineering, 2004 , pg 474-477.

5. Guizzardi, G., On Ontology, ontologies, Conceptualizations, Modeling Languages and

(Meta)Models, In O. Vasilecas, et al. (Org.). Frontiers in Artificial Intelligence and Appli-

cations, Databases and Information Systems IV. IOS Press, Amsterdam, 2007.

6. Fielding, J.M.; Simon, J.; Ceusters, W.; Smith, B., Ontological Theory for Ontology Engi-

neering. In: Proceedings of 9th International Conference on the Principles of Knowledge

Representation and Reasoning, Whistler, Canada, 2004.

7. Fettke, P., Loos, P., Ontological Evaluation of Reference Models Using the Bunge-Wand-

Weber Model. Proceedings of the 2003 Americas Conference on Information Systems,

Florida, USA, 2003.

8. Shanks, G., Tansley, E., Weber, R., Using Ontology to Validate Conceptual Models.

Communications of the ACM, v. 46, issue 10, 2003, pp. 85-89.

9. Smith, B., Against Idiosyncrasy in Ontology Development. In Proceedings of the 4th In-

ternational Conference on Formal Ontology and Information Systems, Baltimore, 2006.

10. Bringuente, A.C., Falbo, R.A., Guizzardi, G., Using a Foundational Ontology for Reengi-

neering a Software Process Ontology. Journal of Information and Data Management, v. 2,

pp. 511-526, 2011.

11. Grüninger, M., Fox, M.S., Methodology for the Design and Evaluation of Ontologies.

Workshop on Basic Ontological Issues in Knowledge Sharing, 1995.

12. Suarez-Figueroa, M. C., Gomez-Perez, A., Motta, E., Gangemi, A., Ontology Engineering

in a Networked World. Springer, Berlin, 2012.

13. d'Aquin, M., Schlicht, A., Stuckenschmidt, H., Sabou, M., Criteria and Evaluation for On-

tology Modularization Techniques, In: Modular Ontologies: Concepts, Theories and Tech-

niques for Knowledge Modularization, Springer-Verlag, 2009. pp. 67–89.

14. Guizzardi, G., Ontological Foundations for Structural Conceptual Models, Universal

Press, 2005.

15. Guizzardi, G., Graças, A.P., Guizzardi, R.S.S., Design Patterns and Inductive Modeling

Rules to Support the Construction of Ontologically Well-Founded Conceptual Models in

OntoUML, 3rd International Workshop on Ontology-Driven Information Systems, 2011.

16. Barcelos, P.P., Santos, V.A., Silva, F.B., Monteiro, M.E., Garcia, A.S., An Automated

Transformation from OntoUML to OWL and SWRL. In: Proceedings of the 6th Seminar

on Ontology Research in Brazil (ONTOBRAS 2013), Belo Horizonte, Brazil, 2013.

17. Ruy, F.B., Falbo, R. A., Barcellos, M.P., Guizzardi, G., An Ontological Analysis of the

ISO/IEC 24744 Metamodel. 8th International Conference on Formal Ontology in Infor-

mation Systems (FOIS'2014), Rio de Janeiro, Brazil, 2014.

18. Scherp, A., Saathoff, C., Franz, T., Staab, S.: Designing core ontologies. Applied Ontolo-

gy, vol. 6, n. 3, 2011, pp. 177-221.

19. Guarino, N., Welty, C., Evaluating Ontological Decisions with OntoClean. Communica-

tions of the ACM. 45(2), 2002, pp. 61-65.

20. Falbo, R. A., Guizzardi, G., Gangemi, A., Presutti, V., Ontology Patterns: Clarifying Con-

cepts and Terminology. Proceedings of the 4th Workshop on Ontology Patterns

(WOP2013), Sydney, Australia, 2013.

21. Obrst, L., Ashpole, B., Ceusters, W., Mani, I., Ray, S., Smith, B., The Evaluation of On-

tologies - Toward Improved Semantic Interoperability, In: Semantic Web: Revolutionizing

Knowledge Discovery in the Life Sciences, Baker, C.J.O., Cheung, K-H. (eds), Springer,

2007.

22. Corcho, O.; Fernández-López, M.; Gómez-Pérez, A. Methodologies, tools and languages

for building ontologies. Where is their meeting point? Data & knowledge engineering 46

(1), 2003, pp. 41-64.

23. Simperl, E., Mochol, M., Burger, T., Achieving Maturity: the State of Practice in Ontology

Engineering in 2009, International Journal of Computer Science and Applications, Vol. 7,

No. 1, 2010, pp. 45 - 65.

24. Pinto, H. S., Tempich, C., Staab, S., Ontology engineering and evolution in a distributed

world using DILIGENT. In: Handbook on Ontologies. 2nd edition, Springer, 2009.

25. Souza, E. F., Falbo, R. A., Vijaykumar, N. L. Using Ontology Patterns for Building a Ref-

erence Software Testing Ontology. In: 8th International Workshop on Vocabularies, On-

tologies and Rules for the Enterprise and Beyond, Vancouver, Canada, 2013.

http://lattes.cnpq.br/9922863822347014

