

Abstract— This paper introduces a platform for situation

management, which supports the development of situation-aware

applications by offering (i) design artifacts for situation type

specification, and (ii) run-time support for situation lifecycle

management (situation detection, which may involve composite

situation pattern recognition and ultimately situation

deactivation). Our approach leverages on JBoss Drools engine

(and its integrated Complex Event Processing platform) and

enhances its functionality to natively support rule-based situation-

awareness. Our platform allows rule-based situation specification

(and further situation lifecycle management) by means of a simple

rule pattern. We exemplify our situation-based development

approach with an application scenario in the public health

domain, in which situation types for detecting and monitoring

suspicious cases of tuberculosis are specified as situation rules.

The specified rules are then deployed and situation detection is

managed by the proposed rule-based situation platform.

Index Terms — rule-based systems; situation specification;

situation detection; situation reasoning

I. INTRODUCTION

central issue in reactive or proactive systems is the

ability to bridge the gap between events that occur in the

environment and the particular state-of-affairs of interest (aka

situations) upon which the system is required to act (or react

to). The field of human factors and ergonomics (HF&E)

addresses this issue in a human-goal centric approach by

means of a well-established concept called situation

awareness (SA). In [1], Endsley defines SA as “the perception

of the elements in the environment within a volume of time and

space, the comprehension of their meaning, and the projection

of their status in the near future”. Endsley also provides a

theoretical framework to SA composition, proposing three

levels of SA: (i) the perception level; (ii) the comprehension

level, and the (iii) projection level. The first level is related to

perceiving the status, attributes, and dynamics of relevant

elements in the environment; the second level involves the

synthesis of situation elements through the processes of pattern

recognition, interpretation, and evaluation of what was

Isaac S. A. Pereira is a Masters student at the Computer Science

Department, Federal University of Espírito Santo (UFES), Av. Fernando

Ferrari, s/n, Vitória, ES, Brazil (email: pereira.zc@gmail.com).

Patrícia Dockhorn Costa is an Associate Professor at the Computer

Science Department, Federal University of Espírito Santo (UFES), Av.

Fernando Ferrari, s/n, Vitória, ES, Brazil (email: pdcosta@inf.ufes.br).

João Paulo A. Almeida is Associate Professor at the Computer Science

Department, Federal University of Espírito Santo (UFES), Av. Fernando

Ferrari, s/n, Vitória, ES, Brazil (email: jpalmeida@ieee.org).

perceived; and, the third level comprises the ability to project

future actions of the elements in the environment. Although

Endsley’s reference model has been proposed to support

humans, we argue that it can be beneficially applied to support

the development of situation-aware applications.

We argue that the situation awareness concept, as referred

to by Endsley, should be exploited by reactive or proactive

systems, such as context-aware applications. Context-

awareness focuses on characterizing the user’s environment

(context) to promote effective interaction between applications

and their users by autonomously adapting application’s

behaviors according to the user’s current situation. In the field

of context-awareness, Dey, in [4], was one of the first to make

efforts in this direction by proposing the situation abstraction

concept, which is an extension of the context concept and

refers to a mean “to determine when relevant entities are in a

particular state so they (applications) can take action”.

Therefore, context-aware applications in the sense of [4] could

also be considered as situation-aware applications.

As discussed by Kokar et al. in [11], “to make use of

situation awareness […] one must be able to recognize

situations, […] associate various properties with particular

situations, and communicate descriptions of situations to

others.” The notion of situation enables designers, maintainers

and users to abstract from the lower-level entities and

properties that stand in a particular situation and to focus on

the higher-level patterns that emerge from lower-level entities

in time.

In order to leverage the benefits of the situation abstraction

concept in the scope of context-aware application

development, proper support is required at design-time (to

specify situation types) and run-time (to detect and maintain

information about situations). This paper contributes to such

support by introducing a situation management infrastructure.

We propose SCENE, a platform for situation management that

leverages on JBoss Drools engine (and its integrated Complex

Event Processing platform) and enhances this engine’s

functionality to natively support rule-based situation-

awareness. Our platform allows rule-based situation

specification (and further situation lifecycle management) by

means of a simple rule pattern. For our purposes, situation

management encompasses support for situation type

specification, deployment, situation detection (which may

involve composite situation pattern recognition) and

situation’s lifecycle control. According to Endsley’s

A Rule-Based Platform for

Situation Management

Isaac S. A. Pereira, Patrícia Dockhorn Costa, João Paulo A. Almeida

A

framework (see Figure 1), our rule-based situation platform

provides automated support for the so-called situation

assessment phase, which comprises part of the perception level

and the comprehension level.

Figure 1. Endsley’s reference model and the Rule-Based Situation

Platform

The paper is further structured as follows: Section II

discusses the notion of situation setting requirements for our

approach; Section III presents a motivating application

scenario in the public health domain, in which situations for

detecting suspicious cases of tuberculosis are specified and

managed by the proposed rule-based situation platform

(coined SCENE); Section IV presents a user’s level view of the

resulting platform, which is based on the specification of

situation types; Section V presents the internal architecture of

the platform, discussing the most important implementation

decisions; Section VI discusses related work and finally

Section VII presents our conclusions and directions for future

work.

II. SITUATIONS

Situations are composite entities whose constituents are

other entities, their properties and the relations in which they

are involved [9]. Situations support us in conceptualizing

certain “parts of reality that can be comprehended as a whole”

[19]. Examples of situations include “John is working”, “John

has fever”, “John has had an intermittent fever for the past 6

months”, “John and Paul are outdoors, at a distance of less

than 10m from each other”, “Bank account number 87346-0 is

overdrawn while a suspicious transaction is ongoing”, etc.

(Technically, the sentences we use to exemplify situations are

utterances of propositions which hold in the situations we

consider; however, we avoid this distinction in the text for the

sake of brevity.)

Situations are often reified (such as in [5], [8]), or ascribed

an “object” status [11], which enables one not only to identify

situations in facts but also to refer to the properties of

situations themselves. For example, we could refer to the

duration of a particular situation or whether a situation is

current or past, which would enable us to say that the situation

“John has fever” occurred yesterday and lasted two hours. The

temporal aspect of situations also enables us to refer to change

in time, thus we could say that “John’s temperature is rising”

or that “Account number 87346-0 has been overdrawn for the

last 15 days”.

A situation type [11] enables us to consider general

characteristics of situations of a particular kind, capturing the

criteria of unity and identity of situations of that kind. An

example of situation type is “Patient has fever”. This type is

multiply instantiated in the cases in which instances of

“Patient” (such as “John”, “Paul”, etc.) can be said to “have

fever”. Thus “John has fever” and “Paul has fever” are

examples of instances of “Patient has fever”. These examples

reveal the need to refer to entity types such as “Patient” as part

of the description of a situation type. The same can be said for

“has fever” which, in this case, is defined in terms of a

property of entities which instantiate the entity type “Patient”

(namely “body temperature”). Detecting situations (i.e.,

instantiations of a situation type) require detecting instances of

the entity types involved in the situation whose properties

satisfy constraints captured in the situation type. The situation

is said to be active while those properties satisfy constraints

captured in the situation type. A situation ceases to exist when

those properties no longer satisfy the defined constraints. In

this case, the situation is said to be a past situation. The point

in time in which a particular situation instance is detected is

called situation activation instant and the point in time in

which the situation ceases to exist is called situation

deactivation instant.

Figure 2 provides a graphical representation of the lifecycle

of three situations instantiating the same situation type. The

vertical axis represents the possible states-of-affairs of the

entities in the domain of interest. The horizontal axis

represents the passing of time. For the sake of simplicity,

suppose we are only concerned with a single property

“temperature” of a single entity instance “John” of type

“Patient”, and we are interested in the situation type “John has

fever”. This situation type is characterized when John’s

temperature lies above a given threshold (gray area in Figure

2).

Figure 2. Example of situation instances lifecycle

These characteristics of situations lead us to the following

basic requirements for our situation-based approach:

1. Situation types should be defined at design time, and

situations instantiating these types should be detected at

runtime;

2. Situation types should be defined with reference to entity

types as well as constraints on entities’ properties and

relations;

3. Temporal properties of situations should be considered

(such as initial time, and, for a past situation, final time and

duration).

In addition to these requirements, we have also observed

that the definition of complex situation types may be more

manageable by defining these types in terms of a composition

of simpler situation types. Thus, we also include the recursive

composition of situation types in our approach. This allows us

to consider different levels of situation assessment.

III. APPLICATION SCENARIO

Tuberculosis (TB) is one of the world’s most ancient and

deadly infectious diseases. According to [16], about 1.4

million people die from TB, and roughly 9 million people

develop the disease, each year. One-third of all people on

Earth — nearly 2.5 billion people — have a latent form of TB.

TB spreads from person to person through air, and its

epidemic control lies on accurate diagnosis, drug regimen, and

prevention from bacterial exposure over healthy population by

infected patients throughout their treatment. Public health

programs could benefit from computational systems that help

monitoring the population in TB focus areas in order to

minimize risks of contagion.

In that sense, we consider an application scenario which

comprises the monitoring of particular patients who present a

risk of contracting and/or spreading TB, such as: (i) persons

who have had recent contact with any infected patients, (ii)

persons who have declared to exhibit characteristic TB

symptoms (clinically confirmed) and even (iii) persons who are

already diagnosed and present the TB disease. Through a

blood test exam called IGRA, a TB infection can be detected;

however, a positive IGRA does not mean the patient has the

TB disease, i.e., an infection with symptoms manifestation. A

positive IGRA could refer to a latent infection case in which

TB symptoms are not manifested by the infected patient.

Monitoring patients in groups of risk and determining their

current diagnosis situation would be critical for supporting

decision making towards a better TB control strategy. In order

to allow patient’s monitoring, we assume the following

contextual data to be available (i) real-time patient’s body

signals (temperature, blood pressure, heart rate, etc), and also

(ii) patient’s medical records (previous diseases and past exam

results). Based on this contextual information, we define four

situation types regarding patients’ symptoms and diagnosis:

1. the TB Infection Situation, which is considered to exist

for every patient whose latest IGRA had a positive result;

2. the Fever Situation, which is considered to exist

whenever a patient’s temperature is above 37º C;

3. the TB Symptom Situation, which is considered to exist

for every patient presenting a series of recurring Fever

Situations (intermittent fever). In fact, several other conditions

including chills and persistent dry cough are also symptoms of

TB. For the sake of clarity in our examples, we have simplified

the TB Symptom Situation specification to the intermittent

fever symptom, only;

4. the TB Disease Situation, which is considered to exist for

every patient which is simultaneously in the current TB

Infection Situation and in the TB Symptom Situation.

Several actions can be taken upon detection of any of the

aforementioned situations. For example, upon detection of a

TB Disease Situation, the respective patient could be contacted

by a health professional; or, upon detection of a TB Symptom

Situation, a warning SMS could be sent to the patient.

IV. THE SCENE PLATFORM: USER’S VIEW

A. Drools

Our approach leverages the Drools general-purpose rule-

based platform which employs the RETE pattern matching

algorithm [6] as a mechanism for rule evaluation (and in our

case situation detection). RETE efficiently matches the

patterns for situations against facts in the Drools Working

Memory (WM) by remembering past pattern matching tests.

Rules are defined in Drools by means of a domain-specific

language called the Drools Rule Language (DRL).

A DRL rule declaration comprises a condition and a

consequence expression block, respectively referred to as Left

Hand Side (LHS) and Right Hand Side (RHS). A rule specifies

that when the particular set of conditions defined in the LHS

occurs, the list of actions in the RHS should be executed. The

LHS is composed of conditional elements which can be

combined through logical operators, such as and, or, not and

exists; and set operators, such as contains and member of. A

conditional element can be a pattern or a constraint. A pattern

matches against a fact in the working memory (of the specified

class type); constraints match against properties, and are

defined as conditions within a pattern. The RHS allows the

declaration of procedural code to be executed when the

conditions defined in LHS are satisfied.

B. Situation Specification

In order to address the requirements we have discussed in

section II, situation types are specified in SCENE by means of

structural and behavioral aspects, which are realized by

Situation Classes and Situation Rules, respectively. Every

user-defined Situation Class specializes the pre-defined class

SituationType, which is an abstract class that addresses the

situation temporal properties and compositional

characteristics.

A user-defined Situation Class should structurally define

the particular roles played by domain entities in that situation

type. For example, consider the Fever Situation type (Figure

3), which is characterized when a person’s temperature rises

above 37º C. The domain entity Person is playing a role

(febrile) in the Fever Situation type and should be explicitly

defined as such. In our approach, situation properties are

tagged as roles using the @SituationRole Java annotation.

Figure 3 depicts the Fever Situation class declaration in DRL,

in which the domain entity Person is tagged as a situation role

by means of a @SituationRole annotation.

1
2
3

declare Fever extends SituationType
 febrile: Person @SituationRole
end

Figure 3. The Fever Situation Type Class declaration

The behavioral part of the situation type specification

defines how the abovementioned roles are played in that

particular situation. In order to accomplish that, the roles

declared in a situation type class are characterized by means of

conditional patterns defined in the LHS of the Situation Rule

declaration. Taking the Fever Situation type example, the

Fever Situation Rule (i.e., the behavioral specification,

depicted in Figure 4) defines febrile as any person whose

temperature exceeds 37º C. The role febrile is specified as a

LHS pattern identifier, which is a binding variable whose

value is assigned for each person satisfying that particular

condition. By means of these binding variables, we can handle

matched facts as objects in the RHS of a rule. Therefore, LHS

identifiers are used to handle situation participants, relating

them to their respective situation role labels, which should

have been previously declared in the situation type class. Note

that identifiers names should match the property names tagged

as situation roles in the Fever Situation class (as defined in

Figure 3). SCENE uses this information internally to allow

proper situation type specification (and further situation

lifecycle control).

When a situation rule is fully matched (i.e., the conditions

are satisfied), all the facts bound by LHS identifiers that refer

to situation roles comprise the so-called situation cast. The

situation cast is the set of all the entities that participate in the

situation (including other situations in composite situation

types).

1
2
3
4
5
6
7
8

rule “Fever”
 @role(situation)
 @snapshot(on)
 When
 $febrile: Person(temperature > 37)
 then
 SituationHelper.situationDetected(drools, Fever.class)
end

Figure 4. The Fever Situation Rule

The RHS of a situation rule invokes SCENE’s procedural

API through the SituationHelper module. The invocation of

the situationDetected method starts the situation lifecycle

control (situation creation, activation and deactivation), which

is completely realized by the platform. When a situation is

activated, a situation fact is inserted in the working memory

representing that particular situation occurrence.

Situation Rules can also present particular metadata

attributes, which are declared before the LHS block. The

@role metadata is assigned to as situation so that the engine

can recognize the respective rule as a situation rule. The other

two metadata attributes are related to what we call situation’s

snapshotting setup. The situation snapshotting refers to the

process of saving situation cast state snaphots throughout the

situation’s existence. Snapshotting allows composite situation

types to constrain past situation occurrences based on situation

cast states.

Consider, for example, that we may need to refer to the

temperature of John in a particular past occurrence of John’s

Fever Situation. Since John’s temperature most probably

changed throughout the active phase of that particular past

situation occurrence, a decision should be made about the

temperature value to be stored. Therefore, in addition to

specifying the need to keep past situation occurrences, SCENE

allows the specification of three strategies for participation

state storage, namely first, stable and last, which are specified

in a rule by means of the @restore metadata. Table 1 explains

in detail the metadata attributes currently supported.

metadata function

@role
Once tagged with the situation value, it allows the

situation engine to handle the rule as a situation rule.

@snapshot

Turns on snapshotting for the situation cast. It must

be turned on if the situation type takes part on

complex situation compositions, i.e., if the situation

type specification refers to past situation occurrences.

(In its absence the default is “off”.)

@restore

Related to situation composition support. Refers to

the participation state storage approach at situation

deactivation. It can assume three values: (i) first: sets

the participants’ state as it was at the situation

detection moment (ii) stable: sets the participants’

state to the most stable phase throughout the

situation’s life or (iii) last: restores the participants’

state as it was when the situation was deactivated.

Table 1. Situation Rule Metadata

With respect to the participation state storage strategies,

consider, for example, a particular past occurrence of John’s

Fever Situation in which John’s temperature (i) was 38º C at

situation activation, (ii) has stabilized in 38,5º C for the

longest period of time during situation active state and (iii)

was 37º C at situation deactivation. Using the strategies first,

stable and last, the following temperature values would be

restored, respectively: 38º C, 38,5º C and 37º C. The @restore

metadata is optional; when omitted, the stable strategy is

considered as default.

In our TB monitoring scenario, the TB Symptom situation

is composed of past occurrences of Fever Situation. Therefore,

the Fever Situation rule (Figure 4) includes the @snapshot(on)

metadata in order to turn on its snapshotting process. Since no

restoring strategy has been defined, the stable strategy is

considered.

C. Temporal Reasoning

Drools natively provides LHS operators to correlate events

in a temporal perspective. All thirteen Allen’s operators [2] are

supported and also their logical complement (negation). For

example, it is possible to define conditions in which an event

happens before another one, or when both events overlap in

time (among other possible event correlations). Nevertheless,

events in Drools are always records of past occurrences; thus,

differently from situations there are no “active” (or current)

events. This requires special treatment of temporal operations

involving situations, as the final time of active situations is

undetermined. We have thus enriched the situation reasoning

engine, to allow the definition of constraints for situations

using the temporal operators. This allows us to apply temporal

operators to pairs of situations, to pairs of events (as supported

natively in Drools) and to situation-event pairs.

Figure 5 shows all supported temporal operators. Time is

represented in the horizontal direction and situations in black

represent inactive situations (those that have ended). Their

definitions rely on comparisons of the initial time and the

converse final time of situations.

Figure 5. Situation Temporal Relations

The TB Symptom situation rule specification (depicted in

Figure 6) uses the situation temporal evaluator after to

describe subsequent episodes of fever of the same patient. The

rule’s LHS constrains two Fever situations by means of two

Fever situation type patterns. The first pattern constrains itself

as a past situation (!active) and its febrile participant’s

temperature to be greater than 38.5ºC. Since this pattern refers

to a past situation, the participant’s restriction considers the

temperature values as they were when the situation was

occurring. The second pattern constrains itself as a current

situation (active) and its febrile participant to be the same as

the patient from the first Fever pattern (febrile == $patient). In

addition, this pattern restricts its own occurrence to be between

an hour and a day (after[1h,2d]) after the past fever

occurrence ($fev1).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

declare TBSymptom extends SituationType
 patient: Person @SituationRole
end

rule "TBSymptom"
@role(situation)
 when
 $fev1: Fever($patient: febrile,
 febrile.temperature > 38.5,

 !active)

 $fev2: Fever(this.febrile == $patient,
 this after[1h,2d] $fev1,
 active)

 then
 SituationHelper.situationDetected(drools,
 TBSymptom.class);
end

Figure 6. TB Symptom Situation

Figure 7 depicts an example timeline of an instance of

TBSymptom situation, in terms of two occurrences of situation

Fever, for the same patient. Note that the situation begins to

exist simultaneously to the subsequent occurrence of situation

Fever, which has started two hours after the last one. When the

second occurrence of situation Fever ceases to exist, so does

the occurrence of situation TBSymptom.

Figure 7. Example timeline for TBSymptom Situation

The TBDisease (depicted in Figure 8) also involves

temporal correlation over situations. It occurs when a patient

diagnosed as having latent TB infection starts presenting any

TB symptom. We omit here the specification of the

TBInfection situation for the sake of brevity, since it requires a

simple rule pattern that checks whether the patient has a

positive result for the IGRA test. The during temporal operator

is used to correlate the existence of a TBSymptom situation for

a particular patient, concurrently to a TBInfection situation for

the same patient.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

declare TBDisease extends SituationType
 patient: Person @SituationRole
end

rule "TBDisease"
@role(situation)
 when
 $tbi: TBInfection($patient: infected,
 active)

 exists(TBSymptom(febrile==$patient,
 this during $tbi))

 then
 SituationHelper.situationDetected(drools,

 TBDisease.class);
end

Figure 8. TB Disease Situation

Figure 9 depicts an example timeline for an instance of

TBDisease situation, in terms of a TBInfection situation

occurrence and any overlapping occurrence of TBSymptom

situation for the same patient. Note that the TBDisease

situation begins to exist simultaneously to the first occurrence

of TBSymptom situation and ceases to exist when the situation

TBInfection ceases.

Figure 9. Example timeline for TBDisease Situation

Figure 10 depicts an example of reaction rule that is executed

upon detection of a TBDisease situation and sends an alert

SMS to the patient suggesting to contact healthcare assistance.

1
2
3
4
5
6
7

rule "ReactToTBDisease"
 when

 TBDisease ($patient: patient,
 active)

 then

 sendTBAlertSMS ($patient.CelNumber)

end

Figure 10. Example of reaction rule

V. SITUATION PLATFORM REALIZATION

A. Situation’s lifecycle management

A situation lifecycle consists of situation detection,

creation, activation and, possibly, but not necessarily,

deactivation. As discussed in section IV, situation detection

occurs when the LHS of a situation rule is satisfied (for a

particular situation cast). Note that conditions in the LHS of a

situation rule hold true while the situation exists (John’s

temperature exceeds 37º C during the existence of John’s

Fever Situation). However, although the situation rule may be

executed several times while the conditions hold, only one

situation fact should be created to represent that particular

situation occurrence. In order to solve this issue, our approach

separates situation detection from its creation.

The situation’s lifecycle management strategy benefits

from a Drools feature called Truth Maintenance System

(TMS). The TMS automatically ensures the logical integrity of

facts that are inserted in the working memory in the RHS of a

rule. A logical fact exists in the working memory while the

conditions (in the LHS) of the rule that has inserted in the

working memory remain true, and retracted from the working

memory when conditions no longer hold. Thus, the solution we

have used consists on a logically inserted fact produced by the

firing of a situation rule to reflect the situation fact state

(existence or nonexistence). This solution has enabled us to

detect the activation and deactivation of a situation instance by

means of a single rule specification, which otherwise, would

require a pair of activation-deactivation rules, as in [7].

Internally, the TMS maintains logical facts by verifying

whether there is an equal object already in the working

memory before inserting any object. This way, an object only

becomes a logical fact in the working memory when it is

unique; otherwise, it is discarded by the engine. Therefore, in

our approach, a situation logical object, which we call

CurrentSituation object, is created by the SituationHelper

class for each time the situationDetected method is executed.

When it is unique (in terms of its situation type and cast), a

CurrentSituation object is inserted as a CurrentSituation fact

in the working memory. When snapshotting capabilities are

required for a particular situation, SCENE keeps serialized

versions of the situation cast for each CurrentSituation objects

creation (i.e., for each execution of the situation rule’s RHS).

As an example, consider John’s Fever Situation. The first time

the RHS of Fever situation rule (Figure 4) is executed for a

particular cast (which consists of John in this case), a

CurrentSituation object is created and immediately, through

logical insertion, becomes a CurrentSituation fact. Further

executions of the situation rule’s RHS for that particular cast

(John) will only produce CurrentSituation objects which will

be rejected as new facts by the TMS. In our example,

serialized versions of situation casts referred to by these

objects are kept since we have chosen to keep past occurrences

of Fever Situation. The TMS automatically retracts John’s

Fever CurrentSituation fact when the LHS of the Situation

Fever rule no longer holds for John.

Situation activation occurs simultaneously to its creation,

and the deactivation occurs when the situation rule’s condition

no longer holds. Deactivated situation facts consist of

historical records of situation occurrences, which may be used

to detect situations that refer to past occurrences.

In order to handle situation activation and deactivation, our

approach internally defines a pre-defined pair of rules, which

are executed in terms of (existence or nonexistence of)

CurrentSituation facts. The Situation Activation rule (defined

in Figure 11) matches for every newly inserted

CurrentSituation fact (i.e., CurrentSituation facts with

situation attribute set to null). The RHS of the activation rule

creates an instance fact of the Situation Type class and its

properties are assigned by the corresponding entities involved

in that particular situation cast. Considering our John’s Fever

Situation example, when the activation rule is executed, an

instance of the Fever class (Figure 3) is created and John is

assigned to the attributed febrile. In addition, the

CurrentSituation fact’s attribute situation now refers to the

newly created situation type instance. This way, the activation

rule no longer matches for that particular CurrentSituation

fact. Upon execution of the situation activation rule, SCENE

also generates an initiator event (ActivateSituationEvent),

which represents the activation timestamp for that particular

situation (and is used for situation temporal reasoning).

1
2
3
4
5
6
7
8
9

10
11
12

rule "SituationActivation"
 when

 $act: CurrentSituation(situation == null,
 $type: type,

 $castset: castset,

 $timestamp: timestamp)

 then

 SituationHelper.activateSituation(drools,
 $castset,

 $type,

 $timestamp));

end

Figure 11. Situation Activation Rule

The Situation Deactivation rule (defined in Figure 12)

matches for every SituationType fact yet active (attribute

active is true) for which there’s no corresponding

CurrentSituation. The absence of the CurrentSituation is a

consequence of the TMS logical retraction due to the no

longer fulfillment of the situation rule’s conditions by a

particular situation cast. The RHS of the deactivation rule

creates a terminator event (DeactivateSituationEvent) for that

particular situation and also sets its transition to a non active

state (attribute active of Situation Type class is set to false).

1
2
3
4
5
6
7

rule "SituationDeactivation"
 when

 $sit: SituationType(active==true)
 not(exists CurrentSituation(situation == $sit))
 then

 deactivateSituation(drools, (Object) $sit);
end

Figure 12. Situation Deactivation Rule

B. Situation Profile Management

The Situation Profile Manager (SPM) is a module that

stores profiles for each situation specification based on

declared metadata information previously mentioned in section

IV. These profiles allow the situation engine to apply

particular management strategies, such as the cast

snapshotting and participation state storage strategies. The

SPM assembles rules profiles by parsing the rule base at the

execution of the session bootstrapping, capturing situation

rule’s metadata values. The SPM also maintains the rules

profiles throughout the situation’s lifecycle execution.

Regarding the lifecycle of snapshot-enabled situation facts,

the snapshotting process takes place for every situation rule’s

LHS match, in which a serialized version of the assembled

situation cast (tagged with a timestamp) is stored. When the

situation ceases to hold, the chosen restoring strategy is carried

on at situation deactivation (execution of the

deactivateSituation helper method).

C. Temporal Evaluators

The drools native API provides an extensible way to

implement new LHS operators. This particular feature allowed

us to implement proper evaluators to handle the situation

temporal relations, as presented in section IV. Our approach

applies the Allen’s interval algebra over initiator and

terminator situation events, which are created by the activation

and the deactivation rules, respectively (see section V.A).

Given the dynamic nature of a situation occurrence, in

which situations may be related to an initiator event only

(active situation) or related to both initiator and terminator

events (inactive situation), the situation temporal operators

have to consider the absence of the terminator event.

In order to evaluate situation temporal relations, the

situation operators’ implementation extracts the events of

interest from situations facts parameters and then evaluates the

situation temporal relation by means of initiators and

terminators events (using the temporal operators currently

provided by Drools).

VI. RELATED WORK

There are several approaches to situation specification,

which have been classified into learning-based or

specification-based and reviewed in [15]. In learning-based

approaches, situations are identified by using AI learning

methods, such as Bayesian Networks and Decision Trees. In

specification-based approaches such as the one proposed here,

situation types are explicitly defined by capturing expert

knowledge in situation specifications.

 Many of the specification-based approaches to situation

such as, e.g., [7], [11], [14], [20], [21], often specify situations

in terms of logical expressions or formal ontologies. Most of

these situation specification approaches make use of general-

purpose languages, such as OWL and OCL. This means that

they are not designed to natively support situation

specification and, therefore, do not offer primitive situation

constructs, such as the ones offered by the proposed rule-based

situation platform. Further, in several of these approaches,

situation types are reduced to logic propositions, failing to

address properties of situations (such as duration) and

temporal relations between situations.

As discussed in [7] several approaches presented in the

literature [10], [12], [22] support the concept of situation as a

means of defining particular application’s states-of-affairs.

Nevertheless, these approaches usually offer reactive query

interfaces instead of detecting situations attentively. The work

presented in [10] discusses a situation-based theory for

context-awareness that allows situations to be defined in terms

of basic fact types. Fact types are defined in an ORM (Object-

Role Modeling) context model, and situation types are defined

using a variant of predicate logic. The realization supported by

means of a mapping to relational databases, and a set of

programming models based on the Java language. Although

the design supports event triggers for situation detection, to the

best of our knowledge and as reported in [10], this

programming model has not been implemented.

In our previous work, some of us have explored the rule-

based platform Jess [7] as the foundation for situation

detection. Differently from Drools, Jess does not support

events, which makes it limiting with respect to temporal

reasoning. In addition, Jess also does not support the so-called

logic facts, which would require additional support from the

situation platform to monitor the situation lifecycle (instead of

using native support from the foundation rule-based platform).

Using the native support offered by Drools with respect to

events and logic facts is beneficial since we expect

optimizations to be more efficiently implemented in the core

platform.

In our earlier work some of us have also addressed issues

involved in a distributed rule-based approach for situation

detection (see [7], [9]). In that work, we have explored two

distributed scenarios (beyond a centralized approach): (i)

distributed detection with multiple engines detecting

independent situations and (ii) a distribution scenario with a

higher level of distribution assigning parts of the rule detection

functionality to different rule engines. Approach (i) should be

directly feasible with the realization patterns proposed (using

Drools Server to connect to remote engines). Nevertheless,

approach (ii) relies on further distribution support from the

rules platform. In our earlier work this was provided by a

distributed extension of Jess (DJess). Similar support is not yet

available for Drools; should this support be available in the

future, we expect to be able to address approach (ii) by

adapting the rule-based situation platform accordingly.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed an approach for the specification and

realization of situation detection for attentive situation-aware

applications. We have implemented a rule-based platform for

situation management (coined SCENE) that leverages on JBoss

Drools engine by adding functionality to natively support rule-

based situation-awareness (the source code is available at

https://github.com/pereirazc/scene). Situation specification

requires a single rule pattern following the standard Drools

rule’s constraint dialect. Situations can be composed of

constraints over domain entities, and in addition can be

composed of existing situations themselves. We have

addressed the temporal aspects of applications, and included

operators to relate situations based on their temporal aspects.

The detection is rule-based, and is deployed on mature and

efficient rule engine and complex event processing technology

available off-the-shelf. The platform manages situations by

implementing situations lifecycle control, such as situation

activation, state maintenance and deactivation.

An evaluation of the performance of situation detection is

ongoing. Nevertheless, due to our previous experiences with

the use of a rule-based approach for situation detection

(employing Jess) [7] we expect the performance of situation

detection to be adequate for most applications. As we have

discussed earlier, the algorithms employed in pattern matching

are optimized to avoid repeating unnecessary comparisons for

conditions that have not been modified, reducing the effort for

situation detection.

In addition to providing infrastructural support for situation

detection, we have also explored a graphical language (coined

SML) for situation modeling. This work has been reported in

[18], in which we present model-driven transformations from

SML models into situation rules to be executed on our rule-

based situation platform.

For future work we intend to continue working on our rule-

based platform improving the ease-of-use aspect without

compromising the expressiveness of the situation specification

approach. For example, in future versions of the situation

platform we intend to allow situation rule specification by

means of the rule’s LHS only. We also expect the platform to

be able to automatically enable the snapshotting process for

situation types taking part in others situation compositions.

REFERENCES

[1] M.R. Endsley. Toward a theory of situation awareness in dynamic

systems. Human Factors and Ergonomics Society, 37:32–64, 1995.

[2] J. F. Allen, “Maintaining knowledge about temporal intervals,”

Communications of the ACM, vol. 26, Nov. 1983, pp. 832–843.

[3] M. Bali, Drools JBoss Rules 5.0 Developer’s Guide, Packt Pub., 2009.

[4] A.K. Dey, “Understanding and Using Context,” Personal and

Ubiquitous Computing, vol. 5, no. 1, 2001, pp. 4-7.

[5] J. Barwise, The Situation In Logic, CSLI Lecture Notes 17, 1989.

[6] C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object

pattern match problem”, Artificial Intelligence, vol. 19, 1982.

[7] P. D. Costa, J. P. A. Almeida, L. F. Pires and M. J. van Sinderen,

“Situation Specification and Realization in Rule-Based Context-Aware

Applications,” Proc. 7th IFIP Intl’ Conf. Distr. Applications and

Interoperable Systems (DAIS’07), Springer, 2007, pp. 32-47.

[8] P.D. Costa, G. Guizzardi, J.P.A. Almeida, L. Ferreira Pires, M. van

Sinderen, “Situations in Conceptual Modeling of Context”. Workshop

on Vocabularies, Ontologies, and Rules for the Enterprise (VORTE

2006) at IEEE EDOC 2006, IEEE Computer Society Press, 2006.

[9] P.D. Costa, Architectural Support for Context-Aware Applications:

From Context Models to Services Platforms, Ph.D. Thesis, University of

Twente, 2007.

[10] K. Henricksen and J. Indulska, “A software engineering framework for

context-aware pervasive computing”, Proc. 2nd IEEE Conf. on

Pervasive Computing and Communications (PerCom 2004), IEEE

Press, 2004, pp. 77-86, doi: 10.1109/PERCOM.2004.1276847.

[11] M. M. Kokar, C. J. Matheus and K. Baclawski, “Ontology-based

situation awareness,” Information Fusion, vol. 10, Jan, 2009, pp. 83- 98,

doi: 10.1016/j.inffus.2007.01.004.

[12] X. Hang Wang, D. Qing Zhang, T. Gu, H. Keng Pung, Ontology-

Based Context Modeling and Reasoning Using OWL. Proc. 2nd IEEE

Annual Conf. on Pervasive Computing and Communications

Workshops (PERCOMW04), USA, 2004, pp. 18−22.

[13] P. Reignier, O. Brdiczka, D. Vaufreydaz, J.L. Crowley, J. Maisonnasse,

Context-aware environments: from specification to implementation,

Expert Systems, vol. 24, no. 5, 2007, pp. 305–320.

[14] S. Yau and J. Liu “Hierarchical Situation Modeling and Reasoning for

Pervasive Computing,” 4th IEEE Workshop on Software

Technologies for Future Embedded and Ubiquitous Systems and 2nd

Intl’ Workshop on Collaborative Computing, Integration, and

Assurance. pp. 5-10, doi:10.1109/SEUS-WCCIA.2006.25.

[15] J. Ye, S. Dobson and S. McKeever, “Situation identification techniques

in pervasive computing: A review,” Pervasive and Mobile Computing,

2011, doi:10.1016/j.pmcj.2011.01.004.

[16] Trial Signals Major Milestone in Hunt for New TB Drugs, TB Alliance

[Online] 2012, Available: http://www.tballiance.org//newscenter/view-

brief.php?id=1046. (Accessed: 25 October 2012).

[17] E. F. Hill. Jess in Action: Java Rule-Based Systems. Manning

Publications Co., Greenwich, CT, USA.

[18] P.D. Costa, I. T. Mielke, I. Pereira, J.P.A. Almeida, “A Model-Driven

Approach to Situations: Situation Modeling and Rule-Based Situation

Detection”. Proc. 16th IEEE Enterprise Distributed Object Computing

Conference (EDOC 2012), IEEE Computer Society Press, 2012.

[19] M. Rosemann, J. Recker, Context-aware Process Design Exploring

the Extrinsic Drivers for Process Flexibility, Proc. 7th CAISE

Workshop on Business Process Modelling, Development, and Support

(BPMDS '06), 2006.

[20] K. Devlin, “Situation theory and situation semantics,” in Handbook of

the History of Logic, vol. 7, J. Woods and D. M. Gabbay, Elsevier,

2006, pp. 601–664.

[21] D. Heckmann, “Situation Modeling and Smart Context Retrieval with

Semantic Web Technology and Conflict Resolution”, MRC 2005,

LNAI 3946, pp. 34–47, Springer, 2006.

[22] T. Strang, C. Linnhoff-Popien, and K. Frank, CoOL: A Context

Ontology Language to enable Contextual Interoperability. Proc. of the

4th IFIP International Conference on Distributed Applications and

Interoperable Systems (DAIS2003), 2003, pp. 236−247.

